首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel fiber spraying process for the manufacturing of short fiber bundle-reinforced Nextel™ 610/Al2O3-ZrO2 oxide fiber composites (SF-OFC) and its characterization. First, the influence of varying fiber lengths (7, 14, and 28 mm, continuous fibers) and fiber orientations (unidirectional 0°, quasi-isotropic, ±45°) was investigated using hand-laid SF-OFC. Due to the weak matrix, the hand-laid material exhibited a strongly fiber-dominated material behavior, that is, variations in fiber length and orientation had a strong influence on the material properties. Second, the automated sprayed SF-OFC, however, exhibited a random orientation of the fiber bundles, which resulted in in-plane isotropic material properties. Average bending strengths of up to 177 MPa, strains of .39%, and a quasi-ductile fracture behavior were achieved. The strain was, therefore, in the range of fabric-reinforced OFC. While the bending strength of the SF-OFC was somewhat lower than that of fabric-reinforced OFC with the fiber orientation parallel to the loading direction, it was more than two times higher than the strength in 45° direction relative to the fabric reinforcement. Combined with good drapability and lower material costs compared to fabric-reinforced OFC, SF-OFC is, therefore, a promising material for industrial applications.  相似文献   

2.
The diffusion of water and artificial seawater through cross‐linked coir fiber reinforced natural rubber composites was analyzed. The effect of fiber loading, chemical treatment, and bonding agent on liquid sorption was investigated. Based on the experiments, it is suggested that the probable mechanism of transport in gum compound is Fickian and that in composites is anomalous. The liquid uptake of all the composites is higher in water than that in artificial seawater. The composites showed increased swelling with fiber loading in water and artificial seawater. The influence of silica in the bonding system on swelling of the composites was also analyzed. In the case of gum compound, the desorption process is also Fickian, similar to the absorption of water and seawater. But the desorption of composites exhibited deviation from Fickian behavior. The effect of chemical treatment of coir fibers on the swelling was analyzed and found that the uptake of water and artificial seawater is reduced further in composites containing treated fibers. POLYM. COMPOS., 26:136–143, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
The reinforcement of polychloroprene rubber by short silk fiber has been studied in the presence of three different dry bonding systems, viz.: (a) “cohedur RK–cohedur A–silica”; (b) “cohedur RK–cohedur A–carbon black”; (c) “resorcinol–hexamethylenetetramine–silica.” The degree of fiber–rubber adhesion of the different bonding systems follows the order (a) > (b) > (c). Scanning electron microscopy studies of tensile, tear, abrasion, and flex failed surfaces of both unfilled and fiber–filled composites containing “cohedur–silica” bonding system have also been made in order to gain an insight to the mechanism of failure.  相似文献   

4.
The effect of a two-component dry bonding system consisting of resorcinol and hexamethylene tetramine on the mechanical and viscoelastic properties of short sisal fiber reinforced natural rubber composites has been studied. The studies were conducted with chemically treated and untreated short sisal fibers. Treated fibers impart better mechanical properties to the composites. By mixing with short fibers, the dynamic storage modulus (E') of natural rubber composites was improved. The effects of fiber-matrix adhesion on the mechanical and viscoelastic properties of the composites were investigated. The storage moduli and mechanical loss increased continuously with an increase in fiber loading but decreased with an increase of temperature. The influence of the fiber orientation on the mechanical and viscoelastic properties is discussed.  相似文献   

5.
Styrene-butadiene rubber (SBR) composites were prepared by incorporating short sisal fibers of different lengths and concentrations into the SBR matrix in a mixing mill according to a base formulation. The curing characteristics of the mixes were studied and the samples were vulcanized at 150°C. The properties of the vulcanizates such as stress-strain behavior, tensile strength, modulus, shore-A hardness, and resilience were studied. Both the cured and uncured properties showed a remarkable anisotropy. It has been found that aspect ratio in the range of 20–60 is effective for sufficient reinforcement. The mechanical properties were found to increase along and across the grain direction with the addition of fibers. The effects of fiber length, orientation, loading, type of bonding agent, and fiber-matrix interaction on the properties of the composites were evaluated. The extent of fiber orientation was estimated from green strength measurements. The adhesion between the fiber and the rubber was enhanced by the addition of a dry bonding system consisting of resorcinol and hexamethylene tetramine. The bonding agent provided shorter curing time and enhanced mechanical properties. The tensile fracture surfaces of the samples have been examined by scanning electron microscopy (SEM) to analyze the fiber surface morphology, orientation, fiber pull-out, and fiber-matrix interfacial adhesion. Finally, anisotropic swelling studies were carried out to analyze the fiber-matrix interaction and fiber orientation. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
This article reports the development of a new composite based on acrylonitrile butadiene rubber (NBR) and melamine fiber. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to study the effect of a dry bonding system in improving the adhesion between the fiber and the matrix. Mechanical properties of the composites are improved in the presence of the dry bonding system comprising of resorcinol, hexamethylene tetramine (hexamine), and hydrated silica. SEM and atomic force microscopic (AFM) images show that there are distinct changes in the fiber‐matrix interphase with the incorporation of the dry bonding system. A strong attachment of the fiber to the matrix is found in the SEM photomicrographs of the tensile fracture surfaces of the composites containing the dry bonding system. AFM section analysis and surface plot show that the improvement in tensile strength and modulus in the presence of the dry bonding system is due to the formation of a well‐defined interphase between the fiber and the matrix. The width of the interphase between the fiber and the matrix is increased in the presence of the dry bonding system, which is reflected in the mechanical properties and aging characteristics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 544–558, 2003  相似文献   

7.
Thermoplastic elastomer blends of natural rubber (NR) with high density polyethylene (HDPE) and with low density polyethylene (LDPE) were reinforced with short silk fiber. Processing characteristics such as torque and temperature developed during mixing and the effect of processing parameters such as nip gap and number of passes in the mill necessary to secure maximum orientation of the fibers in the blends were studied. A small nip gap and a single pass in the mill were found to give best results. Of the different mixing sequences studied, the sequence where short fibers followed by rubber were added to the molten thermoplastic was found to give a uniform dispersion of fibers. Fiber breakage and the change in aspect ratio of the fibers after mixing were also examined. It was observed that, as a direct consequence of the mixing sequence, each fiber was coated with a layer of thermoplastic. Although the properties improved on the addition of the dry bonding system of silica–resorcinol–hexamethylenetetramine, the comparatively long curing time required for full development of adhesion between the fibers and the matrix proved to be a major disadvantage associated with the incorporation of the bonding system. The tensile and tear properties were substantially enhanced, but the ultimate elongation decreased sharply with increasing loading of short fibers in the blends. The effect of fiber orientation and the development of anisotropy in the properties was also noted. Scanning electron microscopy (SEM) studies of the benzene-extracted surfaces of the NR/HDPE (high density polyethylene) blends substantiated the theory of fibers behaving like “mechanical anchors” between the rubber and thermoplastic phase. The effect of fiber loading on the tear and tensile properties of the blends of NR/LDPE with varying blend ratios was studied. Most pronounced improvement in the properties on the addition of short fibers was observed in the high rubber blends. As the plastic content in the blends increased, the short fibers were found to have a lesser influence on the properties. SEM photomicrographs of the tensile and tear fracture surfaces indicated the fiber orientations and the effect of orientation, fiber loading, and blend ratios on the nature of fracture.  相似文献   

8.
在无引发剂的熔融状态下,利用剪切力将马来酸酐接枝于天然橡胶分子链上,并将马来酸酐接枝天然橡胶(MNR)作为增容剂添加到纤维素纤维增强天然橡胶复合材料中,研究其对复合材料性能的影响.结果表明,在熔融状态下利用剪切力能够发生自由基反应或Diels-Alder反应,将马来酸酐接枝于天然橡胶分子链上而制得MNR.添加了MNR的纤维增强天然橡胶硫化胶的物理机械性能,尤其是定伸强度比未添加MNR的硫化胶有明显提高,应力弛豫程度减小;扫描电镜分析也说明添加MNR使填料与橡胶基质之间有了更强的界面黏合力.  相似文献   

9.
The fatigue behavior of polypropylene/coir fiber composites was investigated. Composites were prepared according to an experimental statistical design, in which the independent variables coir fiber and compatibilizer content were varied. The compatibilizer used was maleic anhydride grafted polypropylene (PP‐g‐MA). Compatibilizer free composites were also prepared. Composites were prepared in a corotating twin‐screw extruder and the mechanical behavior of polypropylene/coir fiber composites were assessed through monotonic (tensile) and cyclic (fatigue) tests. Fatigue load controlled tests were conducted under tension–tension loads at a frequency of 6 Hz. The fracture mechanism was accompanied by surface fracture analyses using scanning electron microscopy (SEM). The results indicated the need for using compatibilizer in the composites; however, increase in compatibilizer content did not affect composite fatigue lifetime. Coir content was the variable with the strongest effect on composite properties; increasing this variable caused significant increase in fatigue life. POLYM. ENG. SCI., 53:2159–2165, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
The effect of carbon black on the processing characteristics and physical properties of jute fiber-reinforced composites and the role of silica and carbon black in promoting the adhesion between jute fiber and natural rubber have been studied. It was found that presence of silica is not essential to develop adhesion between fiber and rubber in the presence of carbon black. However, silica and carbon black can improve adhesion by minimizing the resin formation and controlling it to a low molecular weight species. Processing properties like green strength and mill shrinkage are improved by the addition of fiber. Carbon black does not affect mill shrinkage, but improves the green strength. Breakage of jute fiber during mixing is severe, but the extent of breakage is not affected by the presence of carbon black. The minimum loading of fiber to achieve reinforcement is reduced in the presence of carbon black. It was also found that the presence of clay in jute fiber rubber composites impairs the properties. Scanning electron microscopy (SEM) has been used to assess the failure criteria.  相似文献   

11.
使用经间苯二酚-甲醛-胶乳(RFL)体系处理及未处理的短切芳纶纤维(AF)和尼龙纤维(NF)分别与丁腈橡胶(NBR)制备复合材料,研究了纤维种类和表面处理对复合材料的性能,尤其是力学性能和耐磨性的影响。结果表明,与NF/NBR复合材料相比,AF/NBR复合材料的硬度和模量较高,但拉伸强度和扯断伸长率较低,这是由于AF与橡胶间较弱的相互作用及较大的模量差所导致的。对纤维进行RFL处理后,AF/NBR和NF/NBR复合材料的扯断伸长率分别提高297%和28%,前者的拉伸强度提高了30%,这可归因于RFL层对纤维-橡胶界面作用的提升。此外,AF/NBR复合材料的耐磨性较NF/NBR复合材料更好;RFL处理可通过改善NF与NBR的界面作用力提高复合材料的耐磨性,但降低AF/NBR复合材料的耐磨性,这是由于RFL的引入使后者硬度下降所致。  相似文献   

12.
13.
Jute fibers were chopped to approximately 100 mm in length and then processed through a granulator having an 8-mm screen. Final fiber lengths were up to 10 mm maximum. These fibers along with polypropylene granules and a compatibilizer were mixed in a K-mixer at a fixed rpm, 5500, and dumped at a fixed temperature, 390°F, following single-stage procedure. The fiber loadings were 30, 40, 50, and 60 wt %, and at each fiber loading, compatibilizer doses were 0, 1, 2, 3 and 4 wt %. The K-mix samples were pressed and granulated. Finally, ASTM test specimens were molded using a Cincinnati injection molding machine. At 60% by weight of fiber loading, the use of the compatibilizer improved the flexural strength as high as 100%, tensile strength to 120%, and impact strength (unnotched) by 175%. Remarkable improvements were attained even with 1% compatibilizer only. Interface studies were carried out by SEM to investigate the fiber surface morphology, fiber pull-out, and fiber–polymer interface. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 329–338, 1998  相似文献   

14.
介绍了短纤维的预处理方法,总结了短纤维在橡胶中的混合、分散及取向状态,综述了短纤维-橡胶复合材料在轮胎、胶带和胶管中的应用进展,并提出了复合材料的研究方向.  相似文献   

15.
Maleated natural rubber (MNR) was prepared by blending natural rubber (NR) and maleic anhydride (MA) in an internal mixer at 150 °C through mechanochemistry. The graft reaction of MA onto NR and the hydrogen bonding formed between fiber and MA were confirmed by Fourier transformation infrared spectrometer (FTIR). The quantity of grafted MA increased with increasing MA content. The composites showed better mechanical properties with MNR that contains higher MA content. The MNR with 20 phr MA was used as a coupling agent. Kraus equation showed the incorporation of MNR favored the reinforcement of fiber. The composites with MNR showed higher modulus and tensile strength than those without MNR. The coarse surfaces of the pullout fibers and the high storage modulus of composites with MNR implied the enhancement of interfacial adhesion.  相似文献   

16.
Acrylonitrile-butadiene rubber (NBR) has been reinforced with different content of PET up to 25 phr. Vulcanization of prepared composites as will as the unreinforced ones have been induced by ionizing radiation of accelerated electron beam of varying dose up to 150 kGy. Evaluations of the vulcanized composites have been followed up through the measurement of mechanical, physical and thermal properties. Also, scanning electron microscope (SEM) was performed. Mechanical properties, namely tensile strength (TS) and hardness were found to increase with the increase of irradiation dose as well as the increase in the content of PET up to 25 phr. Also, elongation at break (ε b) was found to decrease with the increase of irradiation dose; however, the decrease in εb is not consistence with the increase in fibers loading. Young’s modulus (E) and tensile modulus at 25% elongation (E25) were found to increase with the increase of irradiation dose and fiber loading up to 20 phr. Also, the volume fraction of swollen rubber increases as irradiation dose and/or fiber content increased; it was more influenced by irradiation rather than fiber loading. Anisotropic swelling increased with irradiation and fiber loading up to 20 phr. SEM photomicrograph showed that irradiation causes adhesion between PET fiber and NBR where less pulling out and less pitting on the surface were observed. The thermal properties of the composite irradiated at 100 kGy reveal that the activation energy (E a) increases up to 10 phr fiber content. When the composite that contains 10 phr fiber irradiated at doses higher than100 kGy, Ea decreased.  相似文献   

17.
以天然橡胶(NR)和顺丁橡胶(BR)为基料,以短切碳纤维(SCF)为添加剂,制备了SCF/NR/BR复合材料,考察了SCF用量对NR/BR的摩擦性能及力学性能的影响。结果表明,SCF可增强NR/BR基体的强度,增大其硬度。在NR/BR混合胶中加入15份SCF可以降低混合胶的摩擦系数,减少混合胶的磨损量,提高混合胶的耐磨性能。SCF增强的NR/BR在摩擦过程中发生了磨粒磨损和黏着磨损,形成了卷曲磨屑。  相似文献   

18.
短纤维取向对其橡胶复合材料性能的影响   总被引:1,自引:0,他引:1  
通过对比性实验,研究了短纤维取向对其橡胶复合材料综合物理机械性能的影响。结果表明,在短纤维取向方向上,复合材料综合物理机械性能较好,并且表现出了各向异性的特性。  相似文献   

19.
20.
《Polymer Composites》2017,38(7):1259-1265
Chemical treatment of reinforcement material is one of the main ways of improving the mechanical properties of natural fiber reinforced polymer composites. In the present study, coir fiber was used as reinforcement material, while polypropylene (PP) and polyethylene (PE) polymer were used as matrix material. Before reinforcing with polymer, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate in a sieve shaker. Hot‐pressed method was used for composite manufacturing during which the fiber loading was varied at 0, 5, 10, 15, and 20 wt%. Comparison of the properties of raw and chemically treated coir fiber reinforced PP and PE was conducted. Mechanical characteristics of the composites were evaluated using tensile, flexural, impact, and hardness tests. Water absorption test was conducted to know water uptake characteristics. Microstructural analysis using a scanning electron microscope was performed to observe the adhesiveness between the matrix and the fiber. Thermogravimetric analysis was done to observe the physical and chemical changes in fiber and composites. The results showed that chemical treatment improved the physical, mechanical, and thermal properties of the manufactured composites. PP composites had better properties as compared to PE composites, while higher fiber loading resulted in better mechanical properties of the resultant composites. POLYM. COMPOS., 38:1259–1265, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号