首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dynamic system analysis is carried out on an isolated electric power system consisting of a wind turbine generator (WTG) and a diesel engine generator (DG). The 150 kW wind turbine generator is operated in parallel with the diesel generator to serve an average load of 350 kW. A comprehensive digital computer model of a hybrid wind-diesel power generation system, including the diesel and wind power dynamics for stability evaluation, is developed. The dynamic performance of the power system and its control logic are studied, using the time domain solution approach. A systematic method of choosing the gain parameter of the wind turbine generator pitch control by the second method of Lyapunov that guarantees stability is presented. The response of the power system with the optimal gain setting to the random load changes has been studied. Analysis of stability has further been explored using the eigenvalue sensitivity technique.  相似文献   

2.
In this paper a systematic method of choosing the gain parameter of the wind turbine generator pitch control is presented using the Lyapunov technique that guarantees stability. A comprehensive digital computer model of a hybrid wind–diesel power generation system including the diesel and wind power dynamics with a superconducting magnetic energy storage (SMES) unit for stability evaluation is developed. The effect of introducing an SMES unit for improvement of stability and system dynamic response is studied. Analysis of stability has further been explored using an eigenvalue sensitivity technique. The eigenvalues of the system with and without an SMES unit are studied and the effect of variation of the SMES unit parameters on eigenvalue locations are plotted. The dynamic response of the power system to random load changes with optimal gain setting is also presented.  相似文献   

3.
《Journal of power sources》2006,163(1):604-615
In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.  相似文献   

4.
This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is ful-filled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.  相似文献   

5.
采用序贯蒙特卡罗法对含有储能设备的风/柴孤立发电系统进行充裕度评估。针对样例系统,在发电系统强迫停运率、储能设备容量以及峰值负荷取值不同的情况下,计算发电系统的充裕度指标;研究储能设备对孤立发电系统充裕度的影响,并对产生影响的原因进行分析。结果表明,加入储能设备可改善发电系统的充裕度,提高系统的供电可靠性水平,减少风力发电机组输出功率波动对系统的影响。分析方法和结果可为储能设备在风力发电系统中的应用和储能设备容量的选择等方面提供参考。  相似文献   

6.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

7.
A probabilistic method for the evaluation of the performance and the reliability of wind-diesel energy systems with constrained wind generation is presented. The method computes the expected annual wind and diesel energy production as well as the system loss of load probability and expected unserved energy by processing the statistics of the wind speed and the system load demand. The performance of the method is demonstrated with computational results  相似文献   

8.
Robust control and analysis of a wind-diesel hybrid power plant   总被引:3,自引:0,他引:3  
The aim of this paper is twofold: first to present multivariable frequency domain techniques as a tool for controller design and dynamic analysis of an autonomous wind-diesel power system; and secondly to study how robust model based controllers can be designed for such systems. Dynamic system analyses using multivariable frequency domain techniques are verified against detailed nonlinear simulation studies. The results are encouraging in the sense that the main conclusions in terms of robust stability and performance agree very well with the simulation results. It is also shown that improved performance of the system can be achieved using simple model based controllers  相似文献   

9.
Isolated renewable energy systems based on hybrid wind-solar sources are considered as feasible and reliable options instead of wind-diesel systems. An isolated hybrid scheme employing a simple three-phase square-wave inverter to integrate a photovoltaic array with a wind-driven induction generator has been proposed for the first time. A dynamic mathematical model of the hybrid scheme with variables expressed in d-q synchronous reference frame has been developed. The model is implemented in the power system blockset platform and a comparison has been made between transients simulated and transients obtained in an experimental prototype. Close agreement between experimental and the simulated waveforms has been observed, which validates the model.  相似文献   

10.
This paper presents a dynamic model for variable speed wind energy conversion systems, equipped with a variable pitch wind turbine, a synchronous electrical generator, and a full power converter, specially developed for its use in power system stability studies involving large networks, with a high number of buses and a high level of wind generation penetration. The validity of the necessary simplifications has been contrasted against a detailed model that allows a thorough insight into the mechanical and electrical behavior of the system, and its interaction with the grid. The developed dynamic model has been implemented in a widely used power system dynamics simulation software, PSS/E, and its performance has been tested in a well-documented test power network.  相似文献   

11.
风能等新能源发电系统在供电体系中的占比越来越大,但其随机性和波动性问题,将风力发电厂输出的电力直接向电网调度会造成安全隐患。为了解决这一问题,基于电池储能系统提出了一种风能发电智能调度技术,该技术以风力发电动力学模型和电池储能系统状态模型为基础,利用双重扩展卡尔曼滤波算法实现了风能发电系统的稳定输出。以某地风速实测数据和电网需求功率为参考,对不同算法的输出功率预测值进行了仿真分析和实验对比。结果表明:提出的改进算法预测的风速值误差相比于传感器观测值平均误差降低了28%以上,可以更准确地提供发电系统输出功率;提出的智能调度技术可以使电压波动幅度降低60%以上,系统整体输出功率稳定在参考功率附近,误差不超过2%,有一定的实用意义。  相似文献   

12.
Hybrid wind-diesel systems are an interesting solution for the electrification of isolated consumers. The proposed system, including a properly sized battery, leads to a significant reduction of the fuel consumption, in comparison with a diesel-only installation, also protecting the diesel generator from excessive wear. On the other hand, a properly designed wind-diesel installation remarkably reduces the required battery capacity, in relation to a wind-only based stand-alone system, especially in medium-low wind potential areas. In this context, a complete sizing model, based on a long-term energy production cost analysis is developed, able to predict the optimum configuration of a hybrid wind-diesel stand-alone system on the basis of minimum long-term cost. According to the application results obtained for representative wind potential cases, the proposed hybrid system guarantees one year’s long energy autonomy of a typical remote consumer, presenting a significant cost advantage in relation either to a diesel-only or to a wind-based stand-alone system.  相似文献   

13.
Increasing numbers of wind turbines are being erected. In the near future, they may start to influence the dynamics of electrical power systems by interacting with conventional generation equipment and with loads. The impact of wind turbines on the dynamics of electrical power systems therefore becomes an important subject, studied by means of power system dynamics simulations. Various types of power system dynamics simulations exist and the approach depends on the aspect of power system dynamic behavior being investigated. In this paper, the focus is on fundamental frequency simulations, also known as electromechanical transient simulations. In this type of simulation, the network is represented as an impedance matrix and only the fundamental frequency component of voltages and currents is taken into account in order to reduce the computation time. This simulation approach is mainly used for voltage and angle stability investigations. Models of wind turbine generating systems that match the fundamental frequency simulation approach are presented and their responses are compared to measurements.  相似文献   

14.
随着风力发电大规模入网,其随机性,波动性和间歇性特征对电力系统调频,调峰等有功平衡手段及电压稳定的影响越来越严重.储能系统能够在一定程度上控制风场的输出功率,平抑风电功率波动,改善风机低电压穿越能力,甚至为系统提供辅助服务,是从风场侧提高系统对风电的接纳能力的可行解决方案之一.作者在简要的介绍了风场储能技术应用现状的基础上,重点针对储能型风场内蓄电池储能系统的设计方案,容量优化及控制策略的研究现状及关键问题进行综述及探讨.  相似文献   

15.
We present a statistical method to derive the upper limit of the obtainalbe fuel savings in simple wind-diesel systems applying fixed control rules. The fuel savings when using the optimal control may be estimated from the statistical properties of the time series of the power balance: wind turbine power-load. The method is validated by comparison with a time step simulation of the system. We found out that the fuel savings which may be obtained with a simple persistence based control are close to the optimal values. Using this method the dependence of the fuel savings on the wind climate and the turbulence characteristics at the site may be obtained easily. These results are also compared to the performance data of systems with energy storage.  相似文献   

16.
Stability improvement of induction generator-based wind turbine systems   总被引:2,自引:0,他引:2  
The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated. Simulation results have been presented and the effectiveness of the stability improvement methods has been discussed  相似文献   

17.
In 2008, the Alaska State Legislature created and funded the Renewable Energy Fund (REF) grant program. As a result of this significant increase in available funding, the number of wind-diesel hybrid power systems is growing dramatically in rural Alaska. Development, integration, and operation of complex wind technologies in remote, rural communities are challenging. With multiple communities in Alaska installing and operating these systems, it is important to understand the factors that influence successful completion, operation and long-term maintenance of projects. As of December 2013, over $340 million has been spent constructing wind projects in 30 communities. The majority of these systems was built since 2008 and utilized over $50 million in appropriations from the REF by the Alaska legislature. This report summarizes the findings of an informal survey conducted on the most important characteristics of a successful wind-diesel hybrid power project in small remote rural communities. The survey was done to help guide socioeconomic research in Alaska on community capacity to ensure sustainable projects.  相似文献   

18.
储能系统由于能够实现电能的时空平移,具有响应速度快,规模化等优点,是改善风电波动性,提高其并网能力的有效手段,构建风储联合发电系统成为目前研究重点.简单介绍了风电并网对电力系统的影响及不同类型电池储能技术的发展现状,给出了部分国内外风储联合发电系统的示范工程,并分析了平滑风电功率波动,跟踪计划出力曲线和削峰填谷3种主要运行方式,重点阐述了目前风储联合发电系统控制策略和储能容量配置研究现状,对进一步开展风储联合发电系统的研究进行了展望,指出经济性仍然是制约储能技术应用的关键问题之一,提高包含储能单元的风储联合发电系统的经济性是今后的研究重点.  相似文献   

19.
Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.  相似文献   

20.
The specific needs and ensuing costs for wind power integration into electricity generation systems depend to a large extent on the operation, composition and behaviour of the electricity generation system. The differences in the considered systems greatly influence the outcomes regarding wind power integration. The generation mix is studied here. Analyses are performed using a mixed integer linear programming model so as to get more insight in the consequences of the design and operation of electricity generation systems including wind power by looking at three distinct case systems. The model takes into account a multitude of technical specificities of the operation of an electricity generation system. The results show several aspects that are strongly related to the composition of electricity generation systems that influence the integration of wind power in the systems. These aspects range from the composition of the system to more specific technical parameters of the power plants and their operation, such as the marginal power plant and the greenhouse gas emission levels. The results shed some light on the reasons for the divergence in wind power integration studies. Moreover, it can help in gaining insights in the future development of electricity generation systems where wind power is being introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号