首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Reactive Polymers》1994,22(1):47-53
The radical graft polymerization of vinyl monomers onto the surface of aramid powder, i.e., poly(p-phenylene terephthalamide) powder, initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto the aramid surface was achieved by the reaction of surface acyl chloride groups, which were introduced by the treatment of aramid powder with adipoyl dichloride, with 2,2′-azobis[2-(2-imidazolyn-2-yl)propane] in the presence of pyridine: the amount of azo groups thus introduced onto the surface was determined to be 0.57 mmol/g by elemental analysis. It was found that the polymerizations of methyl methacrylate (MMA) and styrene were successfully initiated by the azo groups on the surface and that the corresponding polymers were grafted onto the surface. The percentage of surface grafting of polystyrene and poly(methyl methacrylate) (PMMA) increased up to 37.6 and 26.5%, respectively. Thermogravimetric analysis of polymer surface-grafted aramid powder confirmed that the grafting of polymers is limited on the surface. The polymerization rate was found to bear a first-order dependence on the concentration of aramid powder having azo groups. This suggests that in graft polymerization, unimolecular termination preferentially proceeds.  相似文献   

2.
The grafting of vinyl polymers onto the surface of polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups (Ti/Si–R–OH) were investigated. The introduction of azo and trichloroacetyl groups onto the surface of Ti/Si–R–OH was achieved by the reaction of the surface alcoholic hydroxyl groups with 4,4′-azobis(4-cyanopentanoic acid) and trichloroacetyl isocyanate, respectively. The radical polymerizations of vinyl monomers were successfully initiated by the azo groups introduced onto the surface and by the system consisting of Mo(CO)6 and Ti/Si–R–COCCl3. During the polymerization, the corresponding polymers were effectively grafted onto the titanium dioxide surface through propagation from surface radicals formed by the decomposition of azo groups and by the reaction of Mo(CO)6 with trichloroacetyl groups on the surface. The percentage of grafting and grafting efficiency in the graft polymerization initiated by the system consisting of Ti/Si–R–COCCl3 and Mo(CO)6 were much larger than those initiated by azo groups. The polymer-grafted titanium dioxide was found to produce a stable colloidal dispersion in good solvents for the grafted polymer. The dispersibility of poly(N,N-diethylacrylamide)-grafted titanium dioxide in water was controlled by temperature. In addition, the wettability of the surface of titanium dioxide to water was readily controlled by grafting of hydrophilic or hydrophobic polymers.  相似文献   

3.
The surface grafting of polymers onto a glass plate surface was achieved by the polymerization of vinyl monomers initiated by initiating groups introduced onto the surface. Azo groups were introduced onto the glass plate surface by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with isocyanate groups, which were introduced by the treatment with tolylene-2,4-diisocyanate. The radical polymerization of various vinyl monomers was initiated by azo groups introduced onto the glass plate surface and the corresponding polymers were grafted from the surface: The surface grafting of polymers was confirmed by IR spectra, and the contact angle of surface, with water. The contact angle of the glass plate increased by the grafting of hydrophobic polymers, but decreased by the grafting of hydrophilic polymers. The radical postpolymerization was successfully initiated by the pendant peroxycarbonate groups of grafted polymer on the surface to give branched polymer-grafted glass plate. The cationic polymerization of vinyl monomers was also successfully initiated by benzylium perchlorate groups introduced onto the glass plate surface and the corresponding polymers were grafted onto the surface. The contact angle of the glass plate surface obtained from the cationic polymerization of styrene was larger than that obtained from the radical polymerization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2165–2172, 1997  相似文献   

4.
Summary To prepare amphiphilic carbon black, we investigated the postgrafting reaction of polyethyleneimine (PEI) with pendant glycidyl groups of grafted polymer on carbon black surface. The grafting of polymers having pendant glycidyl groups onto carbon black surface was achieved by the copolymerization of glycidyl methacrylate (GMA) with methyl methacrylate (MMA) initiated by azo groups introduced onto the surface. Pendant glycidyl groups of poly(GMA-co-MMA)-grafted carbon black was found to react with PEI, and the corresponding polymers postgrafted to the grafted copolymer chains on carbon black surface: the percentage of PEI-postgrafting was readily controlled by the reaction conditions. PEI-postgrafted to poly(GMA-co-MMA)-grafted carbon black, whose PEI postgrafting is 3.9% showed amphiphilic nature and acted as an emulsifier. Received: 13 April 1998/Revised version: 20 May 1998/Accepted: 22 May 1998  相似文献   

5.
The cationic graft polymerization of several monomers initiated by acylium perchlorate groups introduced onto the carbon fiber surface was investigated to modify the surface. The introduction of acylium perchlorate groups was successfully achieved by the reaction of silver perchlorate with acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride. It was found that the cationic polymerization of styrene is initiated by acylium perchlorate groups on the carbon fiber. In the polymerization, polystyrene was grafted onto the carbon fiber surface through the propagation of polystyrene from the surface. Ungrafted polymer was also formed by the chain transfer reaction of growing polymer cation to the monomer. The acylium perchlorate groups have the ability to initiate cationic ring-opening polymerization of tetrahydrofuran (THF) and ε-caprolactone (CL), polyTHF and polyCL being grafted onto the carbon fiber surface, respectively. Polyacetals, such as poly(1,3-dioxolane) and polyoxymethylene, were able to graft onto the carbon fiber by cationic ring-opening polymerization of the corresponding monomers.  相似文献   

6.
To control the surface wettability of nano-sized silica surface, the postgrafting of hydrophilic and hydrophobic polymers to grafted polymer chains on the surface was investigated. Polymers having blocked isocyanate groups were successfully grafted onto nano-sized silica surface by the graft copolymerization of methyl methacrylate (MMA) with 2-(O-[1′-methylpropylideneamino]caboxyamino)ethyl methacrylate (MOIB) initiated by azo groups previously introduced onto the surface. The blocked isocyanate groups of poly(MMA-co-MOIB)-grafted silica were stable in a desiccator, but isocyanate groups were readily regenerated by heating at 150 °C. The hydrophilic polymers, such as poly(ethylene glycol) (PEG) and poly(ethyleneimine) (PEI), were postgrafted onto the poly(MMA-co-MOIB)-grafted silica by the reaction of functional groups of PEG and PEI with pendant isocyanate groups of poly(MMA-co-MOI)-grafted silica to give branched polymer-grafted silica. The percentage of grafting increased with increasing molecular weight of PEG, but the number of postgrafted chain decreased, because of steric hindrance. The hydrophobic polymers, such as poly(dimethylsiloxane) were also postgrafted onto poly(MMA-co-MOI)-grafted silica. It was found that the grafting of hydrophobic polymer and the postgrafting of hydrophilic polymer branches readily controls the wettability of silica surface to water.  相似文献   

7.
The graft polymerization of vinyl monomers onto vapor grown carbon fibers (VGCF) initiated by the system consisting of molybdenum hexacarbonyl (Mo(CO)6) and trichloroacetyl (COCCl3) groups introduced onto the surface was investigated. The introduction of trichloroacetyl groups onto VGCF surface was successfully achieved by the reaction of carboxyl groups on VGCF surface with trichloroacetyl isocyanate. It was found that the radical graft polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) is successfully initiated by the system consisting of Mo(CO)6 and COCCl3 groups introduced onto the surfaces. In the polymerization, the corresponding vinyl polymers were effectively grafted onto the VGCF surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mo(CO)6: the percentage of PMMA grafting reached 40%. Polymer-grafted VGCF gave a stable colloidal dispersion in good solvents for grafted polymer. The electric resistance of composite prepared from the polymer-grafted VGCF suddenly increased in organic solvent vapor over 103 times, and returned to initial resistance when it was transferred into dry air. These results indicate that such composites can be used as novel gas sensors.  相似文献   

8.
Summary The cationic graft polymerization initiated by benzylium perchlorate groups introduced onto ultrafine silica surface was investigated. The introduction of benzylium perchlorate groups onto the surface was achieved by the reaction of silver perchlorate with surface benzyl chloride groups, which were introduced by the treatment of silica with 4-(chloromethyl)phenyltrimethoxysilane. The cationic graft polymerization of styrene and cationic ring-opening polymerization of -caprolactone were found to be initiated by the surface benzylium perchlorate groups and the corresponding polymers were grafted onto the surface. The percentage of grafting onto silica surface decreased with increasing polymerization temperature, because chain transfer reaction of growing polymer cation is accelerated with increasing polymerization temperature.  相似文献   

9.
The introduction of peroxycarbonate groups onto a silica surface and the graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto a silica surface were investigated. The introduction of peroxycarbonate groups onto a silica surface was achieved by Michael addition of amino groups introduced onto the silica surface to t‐butylperoxy‐2‐methacryloyloxyethylcarbonate (HEPO). The amount of peroxycarbonate groups was determined to be 0.17 mmol/g. The graft polymerization of various vinyl monomers such as styrene (St), N‐vinyl‐2‐pyrrolidinone (NVPD), and 2‐hydroxyethyl methacrylate (HEMA) was initiated by peroxycarbonate groups introduced onto the silica surface to give the corresponding polymer‐grafted silicas. The percentage of poly(St)‐grafting reached about 120% after 5 h. This means that 1.20 g of poly(St) is grafted onto 1.0 g of silica. The surface of poly(St)‐grafted silica shows a hydrophobic nature, but the surfaces of poly(NVPD) and poly(HEMA)‐grafted silica show a hydrophilic nature. Furthermore, the poly(St)‐grafted silica was found to give a stable colloidal dispersion in a good solvent for the grafted polymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1491–1497, 1999  相似文献   

10.
To improve the dispersibility of vapor grown carbon fiber (VGCF) in solvents, the grafting of copolymer containing vinyl ferrocene (VFE) onto the surface by ligand-exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of VGCF was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with methyl methacrylate (MMA) using 2, 2′-azobisisobutyronitrole as an initiator. It was found that by heating of VGCF with poly(VFE-co-MMA) in the presence of AlCl3 and Al powder, the copolymer was grafted onto the wall-surface: the percentage of grafting reached to 57.5%. It is considered that the copolymer was grafted onto VGCF surface by ligand-exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of VGCF. In addition, carboxyl groups were successfully introduced onto VGCF wall-surface by the ligand-exchange reaction of 1,1′-dicarboxyferrocene with VGCF in the presence of AlCl3 and Al powder. The carboxyl groups on VGCF were reacted with hydroxyl-terminated polymers to give the corresponding polymer-grafted VGCF. The polymer-grafted VGCF gave a stable colloidal dispersion in solvents for grafted polymer. The electric properties of composite prepared from polymer-grafted VGCF in solvent vapor were investigated.  相似文献   

11.
Summary The cationic polymerization initiated by oxoaminium perchlorate groups introduced onto ultrafine silica surface was investigated. The oxoaminium perchlorate groups were successfully introduced by treatment of nitroxyl radicals on silica surface with perchloric acid. The introduction of the nitroxyl radicals was achieved by reaction of 4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy radical with acid anhydride groups on the surface. The cationic polymerization of isobutyl vinyl ether, N-vinylcarbazole, 2,3-dihydrofuran, and -butyrolactone was initiated by oxoaminium perchlorate groups introduced onto the surface and the corresponding polymers were grafted onto the surface through the propagation of grafted polymer chain from the surface oxoaminium perchlorate groups.  相似文献   

12.
To modify cellulose powder surface, the grafting of polymers with controlled molecular weight and narrow molecular weight distribution onto the surface by the termination of living polymer cation with amino groups introduced onto cellulose powder surface was investigated. The introduction of amino groups onto cellulose powder surface was achieved by the treatment of cellulose powder with isatoic anhydride. It was found that cellulose powder having amino groups are readily reacted with living poly(2‐methyl‐2‐oxazoline) (polyMeOZO) cation, which was generated by ring‐ opening polymerization with methyl p‐toluenesulfonate as an initiator, and polyMeOZO with controlled molecular weight and narrow molecular weight distribution was grafted onto the surface. By the termination of living poly(isobutyl vinyl ether) (polyIBVE), which was generated by the polymerization with HCl/ZnCl2 initiating system, with amino groups on cellulose powder, polyIBVE was also grafted onto the surface. The mole number of grafted polymer chain on cellulose powder surfaces decreased with increasing molecular weight of the living polymer cation, because of increasing steric hindrance with increasing molecular weight of living polymer cation. Wettability of cellulose powder surface to water was found to be controlled by grafting of hydrophilic or hydrophobic polymer onto the surface. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 515–522, 2000  相似文献   

13.
Summary The effect of initiating groups introduced onto silica surface on the molecular weight of grafted polystyrene chain was investigated. By the treatment of polystyrene-grafted silica with aqueous solution of alkali, surface grafted polystyrene was isolated from the surface. The molecular weight of polystyrene grafted onto the silica obtained from the radical graft polymerization initiated by peroxyester groups introduced onto the surface was found to be much larger than that from the cationic polymerization initiated by acylium perchlorate groups. The number of grafted polystyrene in the radical polymerization, however, was much less than that in the cationic polymerization. Furthermore, the effect of molecular weight of grafted polystyrene on the dispersibility of silica in tetrahydrofuran was examined.  相似文献   

14.
《Reactive Polymers》1991,14(1):33-40
The introduction of acyl imidazole groups onto a carbon black surface was achieved by the reaction of the carboxyl groups on the surface with N N′-carbonyldiimidazole, the loading of acyl imidazole groups introduced was determined to be 0.28 mmol/g. In addition, reactive carbon black having acid anhydride groups was prepared by the reaction of phenolic hydroxyl groups with trimellitic anhydride chloride; the amount of acid anhydride groups introduced onto the surface was determined to be 0.20 mmol/g. The reaction of acyl imidazole groups on carbon black with commercially available polymers having hydroxyl or amino groups such resulted in polymers that were found to be grafted onto the surface via ester or amide bonds. The percentage of grafting of diol-type poly(propylene glycol) and diamine-type polydimethylsiloxane was increased to 27.2 % and 42.5 %, respectively. Furthermore, acid anhydride groups on carbon black also reacted with functional polymers having hydroxyl or amino groups to give polymer-grafted carbon blacks. The grafting reaction was accelerated by the addition of tertiary amines. These polymer-grafted carbon blacks produced a stable colloidal dispersion in good solvents for the grafted polymer, but readily precipitated in poor solvents.  相似文献   

15.
In this article we present the result of a comparative study of two kinds of polymerization methods—solution polymerization (sol. poly.) and dispersion polymerization (dis. poly.) for grafting polymer onto silica. As a model for the grafting polymerization reaction, styrene was chosen as the monomer and azo diisobutyronitrile (AIBN) as the initiator. The study aims at supplying theoretical reference for better selecting polymerization method to graft polymer on the silica particle surface. First, monolayers of 3‐methacryloylpropyl trimethoxysilane were chemically bonded onto the surfaces of micrometer‐sized silica gel particles, and so double bonds were immobilized onto the silica surface. Second, the copolymerizations between the immobilized double bonds and the monomer styrene were carried out, homopolymerizations of styrene followed, and finally polystyrene was grafted to the silica surfaces. Two kinds of polymerization methods, sol. poly. and dis. poly., were adopted respectively, and the effects of polymerization methods on grafting process were examined mainly. At the same time, the effects of different polymerization conditions on the grafting degree were researched. It was found that in the dis. poly. system the grafting degree is obviously higher than that in the sol. poly. system under the same polymerization conditions, and the grafting degree can go up to 47%, i.e. 47g/100g. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5808–5817, 2006  相似文献   

16.
Summary The ring-opening polymerization of 2-oxazolines (OXZs) was found to be initiated by chloromethyl groups introduced onto carbon black surface. The introduction of chloromethyl groups onto the surface was achieved by the reaction of carbon black with 3,3-bischloromethylbenzoyl peroxide in carbon tetrachloride. During the polymerization, poly-OXZs were grafted from carbon black based on the propagation of the polymers from the surface: percentage of grafting increased with an increase of conversion and reached 40–60%. The polymerization was accelerated by the addition of potassium iodide. Poly-OXZ-grafted carbon black produced stable colloidal dispersions in both hydrophobic and hydrophilic solvents.  相似文献   

17.
An easy method for preparing polymer-grafted multi-walled carbon nanotubes (MWCNTs) with high graft yields was developed by using free radical graft polymerization (FRGP) from photoinduced surface initiating groups on MWCNTs. The surface initiating groups were first formed by UV irradiation of MWCNTs previously modified with 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (VA-086) (MWCNTs-OH) in the presence of benzophenone in benzene, and the subsequent FRGP of vinyl monomers was carried out consecutively at 80 °C. The surface initiating groups were homolytically cleaved to surface radicals and semipinacol radicals by thermal activation, and the surface radicals initiated FRGP. Polystyrene, poly(butyl acrylate), poly(methyl methacrylate), and poly(2-hydroxyethyl methacrylate) were successfully grafted onto the surface of MWCNTs with graft yields of 46, 26, 37, and 53 wt.%, respectively, after 15 h of FRGP.  相似文献   

18.
To prepare polymer-grafted nano-sized silica with hydrophilic core and hydrophobic shell and with higher percentage of grafting, the postgraft polymerization of vinyl polymers onto hyperbranched poly(amidoamine)-grafted (PAMAM-grafted) nano-sized silica initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica was investigated. The introduction of trichloroacetyl groups onto PAMAM-grafted silica surfaces was readily achieved by the reaction of trichloroacetyl isocyanate with terminal amino groups of PAMAM-grafted silica. It was found that the polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) was successfully initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica. In the polymerization, the corresponding vinyl polymers were effectively postgrafted onto PAMAM-grafted silica, based on the propagation of polymer from surface radicals formed by the reaction of terminal trichloroacetyl groups with Mo(CO)6: the percentage of PMMA postgrafting onto PAMAM-grafted silica reached to 400% after 30 min, but the formation of gel was observed after 35 min. The formation of gel tends to decrease by use of hyperbranched PAMAM-grafted silica with higher percentage of grafting. The vinyl polymer-postgrafted nano-sized silica gave a stable colloidal dispersion in various organic solvents.  相似文献   

19.
炭黑表面的接枝聚合改性方法   总被引:4,自引:1,他引:4  
通过接枝高聚物对炭黑表面改性,可显著提高炭黑与基质的相容性,本文介绍了带有可反应端基的聚合物和可分解自由基官能团的聚合物与炭黑间的接枝反应,这种接枝方法可控制接枝链分子量及其分布。  相似文献   

20.
The radical polymerization behavior of vinyl monomers, such as styrene, methyl methacrylate (MMA), and vinyl acetate (VAc), in the presence of carbon black initiated by benzoyl peroxide (BPO) and 2,2'‐azobisisobutyronitrile (AIBN) in ionic liquid (IL) was compared with those in toluene. 1‐Butyl‐3‐methylimidazolium hexafluorophosphate was used as IL. The radical polymerization of vinyl monomers initiated by BPO and AIBN in the presence of carbon black was remarkably retarded in toluene. On the contrary, the retardation of the polymerization by carbon black was considerably reduced in IL. During the radical polymerization in the presence of carbon black, a part of polymer formed was grafted onto carbon black surface based on the termination reaction of the growing polymer radicals with carbon black surface. The percentage of grafting and molecular weight of polymer in IL were much higher than those in toluene. This may be due to the fact that lifetime of the growing polymer radical is prolonged because of high viscosity of IL. Therefore, the growing polymer radicals with higher molecular weight were trapped by carbon black surface, because of stabilization of polymer radicals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号