首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无挡板搅拌槽中液-固体系的分散特性   总被引:3,自引:2,他引:1  
在内径0.3 m、高0.45 m的无挡板搅拌槽内,采用直径0.15 m的三叶70o下推斜叶透平桨(PBTD, Pitched Blade Turbine Downflow)进行水-二氧化硅两相体系液固分散特性的研究. 应用PC-6A粉体浓度测量仪对体系中颗粒局部浓度进行测定. 考察了颗粒平均相含率为0.005的条件下,不同搅拌转速、搅拌桨离底高度对颗粒局部浓度分布的影响. 结果表明,采用较高搅拌转速、较低的搅拌桨离底高度有利于固体颗粒的悬浮. 本实验中,在搅拌转速为173 r/min、搅拌桨离底高度为0.08 m的操作条件下,颗粒悬浮效果最好.  相似文献   

2.
The mass transfer coefficient between solid particle and liquid has been measured in high aspect ratio multiimpeller agitated three phase (gas-liquid-solid) reactors. Experiments were conducted in 0.15 and 0.30 m id acrylic columns of lm length each. Two types of impeller were used: disk turbine (DT) and pitched turbine downflow (PTD). Air used as the gas phase was introduced through a ring sparger of 0.8 D size located 0.1 T distance above the bottom. The interimpeller spacing was maintained at the tank diameter. The range of gas velocity used was 0-15 mm/s. A unique correlation between particle-liquid mass transfer coefficient and critical impeller speed for solid suspension has been presented.  相似文献   

3.
The critical impeller speed for suspension of solid particles (Njs) has been measured in multi-impeller mechanically agitated contactors of 0.15 and 0.30m id and 1.0 m height. Three types of impellers, i.e. disk turbine (DT), pitched turbine downflow(PTD) and pitched turbine upflow(PTU) were used. The number of impellers used in the 0.3 m and 0.15 m id reactors were three and four, respectively. The distance maintained between two impellers was equivalent lo the tank diameter. The effect of impeller type and diameter, particle size and loading, and clearance of the bottom impeller from the reactor bottom was studied and results compared with those of single impeller agitated contactors. PTD impeller was found to be more efficient for solid suspension. The Njs values obtained in reactors with multiple impeller are essentially the same as those observed in single impeller reactor and the bottom impeller plays dominant role in determining the Njs, values. An empirical correlation has been proposed for estimation of Njs and an attempt has been made to explain the mechanism of suspension in multi-impeller agitated reactor.  相似文献   

4.
Both the numerical and experimental approaches were used to study the effects of the gas recirculation and non‐uniform gas loading on the mass transfer rate for each impeller in a multiple impeller system. By combining the calculated gas velocity and local gas holdup, the gas recirculation rate around each impeller was estimated. The local mass transfer coefficients for systems equipped with various combinations of the Rushton turbine impeller (R) and pitched blade impeller (P) were determined by using the dynamic gassing out method. It is found that the Rushton turbine impeller has to be served as the lowest impeller in order to have a better gas dispersion and to give a higher overall KLa for a multiple impeller gas‐liquid contactor. The upper pitched blade impeller always enforces the circulating flow around the Rushton turbine impeller just beneath it and gives a higher overall average mass transfer rate. However, the system equipped with only the pitched blade impellers results in a much lower mass transfer rate than the other systems owing to the poor gas dispersion performance of the pitched blade impeller.  相似文献   

5.
Experiments have been performed to study the effect of the density and the volume of the tracer pulse on the mixing time for two impeller combinations in the presence of gas in a 0.3 m diameter and 1 m tall cylindrical acrylic vessel. The tall multi-impeller aerobic fermenters, which require periodic dosing of nutrients that are in the form of aqueous solution, is a classic case under consideration. Conductivity measuring method was used to measure the mixing time. Two triple impeller combinations; one containing two pitched blade downflow turbines as upper impellers and disc turbine as the lowermost impeller (2 PBTD-DT) and another containing all pitched blade downflow turbines (3 PBTD) have been used. Other variables covered during experiments were the density and the amount of the tracer pulse, the impeller rotational speed and the gas superficial velocity. Fractional gas hold-up, Power consumption and mass transfer coefficient have also been measured for both the impeller combinations. Influence of aeration and impeller speed on the mixing time has been explained by the interaction of air induced and impeller generated liquid flows. Three different flow regimes have been distinguished to explain the hydrodynamics of the overall vessel (i.e., multiple impeller system). A compartment model with the number of compartments varying with the flow regimes have been used to model liquid phase mixing in these flow regimes. A correlation for the prediction of the dimensionless mixing time in the loading regime has been proposed in order to account the effect of the density and the amount of the tracer pulse on the mixing time. Correlations have also been proposed to predict fractional gas hold-up and kLa.  相似文献   

6.
The critical suspension speeds of floating particles in a gas‐liquid‐floating particle three‐phase system were measured in a multiple‐impeller agitated vessel. Three types of impellers, i.e., simple axial‐flow impeller upflow (SPU) and downflow (SPD), disk turbine (DT) and wing turbine (WT), twelve types of baffles and three kinds of gas spargers were used. The influences of impeller types, baffle configurations, gas spargers, gas superfacial velocity and particle loading on the critical suspension speeds of floating particles were systematically investigated. The optimum regressions of critical suspension speeds were respectively obtained for some better combinations of impellers, bafffles and spargers, such as (a) the 45SPU+45SPD+DT triple impellers, two high‐level baffles and two low‐level baffles (symmetric allocation), gas spargers, (b) the 45SPU+45SPD+DT three‐impeller, standard baffle and small gas sparger. Their errors were smaller than 11 %.  相似文献   

7.
The mass transfer coefficients between solid particles and liquids in high aspect ratio contactors agitated by multiple impellers have been reported. Two vessel sizes i.e., 0.15 m and 0.30m I.D. each with a length of 1.0 m were used. The effects of particle size, liquid viscosity and agitation speed were studied using two types of impellers, i.e., disc turbine (DT) and pitched turbine downflow (PTD). The spacings between two impellers were maintained at tank diameter. A simple mass transfer correlation based on critical suspension speed is proposed.  相似文献   

8.
Solids suspension characteristics in gas—liquid–solid three‐phase stirred tanks with multi‐impellers were experimentally examined. Minimum impeller speeds for ultimately homogeneous solid suspension have been measured stirred tank reactors. Three impellers were installed: two four‐pitched blade downflow disk turbines and one Pfaudler type impeller chosen to provide good gas dispersion and to accomplish off‐bottom suspension of solid particles, respectively. Gas dispersion causes an increase in particle sedimentation associated with a decrease in power consumption and as a result, minimum impeller speeds for ultimately homogeneous solid suspension increase with increasing gas flow rates. A correlation was developed to predict minimum impeller speeds for ultimately homogeneous solid suspension. The proposed correlation, which agrees satisfactorily with the experimental results, is expected to be useful in design and scale‐up.  相似文献   

9.
Despite much research on gas-liquid-solid systems and their widespread application in industry, gas dispersion with solid suspension in multistage stirred reactors equipped with multiple impellers has received little attention. We report here the critical just-suspension impeller speed for different concentrations of solid particles, gas holdup, and shaft power in a vessel of 0.48 m diameter with four baffles and dished base. Five agitator configurations, each with three impellers mounted on a single shaft, have been used in the experiments. Two novel impeller designs were used, a deep hollow blade (semi-ellipse) disc turbine (HEDT) and four-wide-blade hydrofoil impellers. The hydrofoils were used in both up-pumping (WHU) and down-pumping (WHD) modes. Glass beads of 50 ~ 150 μm diameter and density 2500 kg · m?3 were suspended at solid volumetric concentrations of 1.5, 3, 6, 9, and 15%. Results show that these suspended solids have little effect on the relative power demand. Agitators using the HEDT radial dispersing impeller at the bottom have a higher relative power demand (RPD = PG/PU) than those with WHD or WHU as the lowest one. For all impeller combinations there is little or no effect on gas holdup with increasing solid concentrations. Of the five different impeller combinations, those with an axial flow bottom impeller have significantly higher just-suspension agitation speeds and power consumption, so mounting the hydrofoil impeller at the bottom is not the optimal configuration for particle suspension. Of these impeller combinations, at a given gas flow rate the arrangement of HEDT + 2WHU has the highest relative power demand, gas holdup, and power input for both the suspension of settling particles and gas dispersion.  相似文献   

10.
在直径为386 mm 的通气多层桨搅拌釜中,实验考察了下层搅拌桨型、挡板和气体分布器等对颗粒悬浮临界搅拌转速的影响,这对工业过程的设计和放大具有一定的指导意义.  相似文献   

11.
We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the soli...  相似文献   

12.
Experimental measurements with six impeller types in solid‐liquid suspensions indicate that impeller power draw in the turbulent regime is approximately proportional to the solid‐liquid suspension density when the solids are distributed throughout the liquid; however, the accuracy of this approach is limited and there are clear differences in the behaviours of the various impellers. In general, power draw increases are less than suspension density increases for impellers with large blade‐trailing vortices, while power draw increases are equal to or greater than suspension density increases for impellers with smaller blade‐trailing vortices. The power draw data is well‐described using linear relations between the impeller power number and the density difference correlating parameter proposed by Micheletti et al.,[9] with the slope of the relation being dependent on impeller type. More extensive testing with a pitched‐blade turbine, using a greater variety of solids, found that the relation between the impeller power number and the density difference correlating parameter is independent of particle size for particles as large as 1 mm (1000 microns). For particles larger than 1.7 mm (1700 microns), in addition to suspension density, the solid volume fraction affects the pitched‐blade turbine power number; however, it is difficult to determine if this effect exists at all scales or if it is a result of the large particle size relative to the impeller dimensions in the experimental system. For large particles, the power draw is increased by the addition of neutrally‐buoyant particles that do not change the suspension density, with the magnitude of the increase being dependent on impeller type.  相似文献   

13.
In this work, simulations have been performed for three phase stirred dispersions using computational fluid dynamics model (CFD). The effects of tank diameter, impeller diameter, impeller design, impeller location, impeller speed, particle size, solid loading and superficial gas velocity have been investigated over a wide range. The Eulerian multi-fluid model has been employed along with the standard k-ε turbulence model to simulate the gas-liquid, solid-liquid and gas-liquid-solid flows in a stirred tank. A multiple reference frame (MRF) approach was used to model the impeller rotation and for this purpose a commercial CFD code, FLUENT 6.2. Prior to the simulation of three phase dispersions, simulations were performed for the two extreme cases of gas-liquid and solid-liquid dispersions and the predictions have been compared with the experimental velocity and hold-up profiles. The three phase CFD predictions have been compared with the experimental data of Chapman et al. [1983. Particle-gas-liquid mixing in stirred vessels, part III: three phase mixing. Chemical Engineering Research and Design 60, 167-181], Rewatkar et al. [1991. Critical impeller speed for solid suspension in mechanical agitated three-phase reactors. 1. Experimental part. Industrial and Engineering Chemistry Research 30, 1770-1784] and Zhu and Wu [2002. Critical impeller speed for suspending solids in aerated agitation tanks. The Canadian Journal of Chemical Engineering 80, 1-6] to understand the distribution of solids over a wide range of solid loading (0.34-15 wt%), for different impeller designs (Rushton turbine (RT), pitched blade down and upflow turbines (PBT45)), solid particle sizes (120-) and for various superficial gas velocities (0-10 mm/s). It has been observed that the CFD model could well predict the critical impeller speed over these design and operating conditions.  相似文献   

14.
以水为液相,玻璃珠为固相,在固-液搅拌槽内比较了传统径向流Rushton桨、轴向流下推式45°六斜叶桨以及新型半折叶搅拌桨的功耗、泵送能力和对固体颗粒的悬浮效果。并应用CFD (Computational fluid dynamics)方法研究了不同搅拌桨操作下颗粒的轴向速度分布。结果表明:在相同转速下,Rushton桨的功耗最大,新型半折叶桨与下推式45°六斜叶桨的功耗接近;新型半折叶桨的流量准数最大,泵送能力最强;在固-液体系中,新型半折叶桨与下推式45°六斜叶桨的流型类似,但3种桨中新型半折叶桨对固体颗粒的悬浮效果最好。  相似文献   

15.
Despite much research on gas-liquid-solid systems and their widespread application in industry, gas dispersion with solid suspension in multistage stirred reactors equipped with multiple impellers has received little attention. We report here the critical just-suspension impeller speed for different concentrations of solid particles, gas holdup, and shaft power in a vessel of 0.48 m diameter with four baffles and dished base. Five agitator configurations, each with three impellers mounted on a single shaft, have been used in the experiments. Two novel impeller designs were used, a deep hollow blade (semi-ellipse) disc turbine (HEDT) and four-wide-blade hydrofoil impellers. The hydrofoils were used in both up-pumping (WHU) and down-pumping (WHD) modes. Glass beads of 50 ∼ 150 μm diameter and density 2500 kg · m-3 were suspended at solid volumetric concentrations of 1.5, 3, 6, 9, and 15%. Results show that these suspended solids have little effect on the relative power demand. Agitators using the HEDT radial dispersing impeller at the bottom have a higher relative power demand (RPD = PG/PU) than those with WHD or WHU as the lowest one. For all impeller combinations there is little or no effect on gas holdup with increasing solid concentrations. Of the five different impeller combinations, those with an axial flow bottom impeller have significantly higher just-suspension agitation speeds and power consumption, so mounting the hydrofoil impeller at the bottom is not the optimal configuration for particle suspension. Of these impeller combinations, at a given gas flow rate the arrangement of HEDT + 2WHU has the highest relative power demand, gas holdup, and power input for both the suspension of settling particles and gas dispersion.  相似文献   

16.
Hydrodynamic parameters such as power consumption, gas holdup, critical impeller speed for solid suspension and mixing time were measured in slurry stirred tank reactors with multiple impellers. The experiments were mainly conducted in a stirred tank of 0.2mi.d. with baffles. It contained two four-pitched blade downflow turbines for gas dispersion and one Pfaudler type impeller for solid suspension. As a part of scaling studies, additional experiments were also carried out in a larger stirred tank reactor (0,8m i.d.) geometrically similar to the smaller one. Glass beads and polymeric particles were used as a solid phase. Solid concentration was in the range of 0-20% (K/K). Tap water and methanol were used as a liquid phase

The power consumption decreased due to an introduction of gas and the presence of solids caused a decrease in the extent of reduction in power consumption. A correlation for power consumption in aerated slurry systems was proposed, It was found that the presence of solids is responsible for a decrease in gas holdup. A new correlation for gas holdup in gas-liquid-solid three-phase stirred tank reactors was developed. It fit the present experimental data reasonably. The critical impeller speed for solid suspensions increased with increasing gas flow rate. However, its increase was rather smaller as compared with the predictions of the correlations available in the literature. We proposed a correlation of the critical impeller speed for solid suspension in the presence of gas. The mixing time complicatedly increased or decreased depending on gas flow rate, impeller speed, solids type and concentration.  相似文献   

17.
A characterisation of three commonly used impellers was made in this study by measuring local mean velocities and the fluctuations of these velocities with the LDV technique. The data was used to estimate volumetric flow, velocity fluctuations and turbulent intensity in the impeller region of the tank. The impellers investigated were a high flow impeller, a pitched blade turbine and a Rushton turbine. The cylindrical vessel used was made of Perspex, had a dished bottom (DIN 28013), was equipped with four baffles and had an inner diameter of 0.45 m. It was found that the bulk velocities could be scaled with the tip-speed of the impeller (ND). The flow rate at constant impeller speed increased in the order high flow impeller — Rushton turbine — pitched blade turbine. The corresponding order for the turbulence fluctuation is: high flow impeller — pitched blade turbine — Rushton turbine. The velocity profile of the flow out from the high flow impeller was furthermore, not as smooth as could be expected.  相似文献   

18.
在直径为0.48 m的椭圆底搅拌槽中,采用包括半椭圆(HEDT)及抛物线(PDT)形叶片的4种盘式涡轮桨,研究了叶片形状对气液两相体系中临界分散、通气功率和气含率的影响. 结果表明,由载气到气泛测得的泛点比气泛到载气测得的泛点明显滞后;比较相同条件下PDT桨与HEDT桨的通气功率和气含率,相同通气准数时,PDT桨的相对功率消耗(Pg/P0)较高,通常大于0.75,且受通气量影响较小;功率消耗相同时,在较宽气量范围内PDT的气含率较HEDT高约5%. PDT桨在相同气量时达到气液分散所需的功率略低,推荐用于工业气液搅拌反应器中.  相似文献   

19.
Dispersion of liquid–liquid systems is often applied in industrial processes such as extraction, suspension, and emulsion polymerization. The influence of emulsification of the monomer in the aqueous phase on the course and outcome of the batch emulsion polymerization of styrene has been studied. A visual criterion was applied for determining the lowest impeller speed for sufficient emulsification (N*). It appeared that in polymerization experiments under the same conditions, N* was the critical value above which no further increase in polymerization rate was observed. Using a turbine impeller instead of a pitched blade impeller as well as using a larger impeller diameter provides better emulsification at constant power input. The results indicate that scale‐up with constant impeller tip speed is most appropriate in case of a turbine impeller. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3225–3241, 1999  相似文献   

20.
The impact of floating suspended solids on the homogenization of the liquid phase in a stirred vessel was studied. The experiments were performed in a tank with an internal diameter of 0.32 m, equipped with a 45° pitched four-blade turbine (PTD) placed at varying positions in the vessel. Tap water was used as the liquid phase and polyethylene particles (PEHD) were used as the solid phase. The impeller speed was varied from N = 200–900 rpm. The mixing time of the suspended system was measured by a conductivity technique using a sodium chloride solution as the tracer, whereas power consumption was measured by the torque table. The influence of mean concentration of the suspended floating solids, average particle size, surface tension at the liquid/air interface and impeller diameter and its position on the mixing time and power consumption were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号