首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully aromatic copoly(ester-imide)s of various compositions were synthesized in bulk by conversion of N-(3-acetoxyphenyl)trimellitic acid imide and N-(2-methyl-4-acetoxyphenyl)trimellitic acid imide with 4-acetoxybenzoic acid as comonomer. The solid state properties, the melting and phase behaviour of the copoly(ester-imide)s differ largely, but all of them show high thermal stability. Some of the copoly(ester-imide)s form mesophases in the melt. Most of the investigated copoly(ester-imide)s of N-(3-acetoxyphenyl)trimellitic acid imide and 4-acetoxybenzoic acid and some of the ternary systems could be processed from the melt. Copoly(ester-imide)s of N-(2-methyl-4-acetoxyphenyl)trimellitic acid imide and 4-acetoxybenzoic acid, however, do not melt before rapid degradation at temperatures above 480°C.  相似文献   

2.
Methyl methacrylate was grafted onto wool in the presence of an aqueous dioxane solution with a hydrogen peroxide-sodium thiosulphate initiator system, using the optimum conditions found in our previous paper19. It was stated that up to 90% conversion for the rate of reaction the following equation holds: \documentclass{article}\pagestyle{empty}\begin{document}${\rm R}_{\rm p} = - \frac{{{\rm d}\left[ {\rm M} \right]}} {{{\rm dt}}} = {\rm K} \cdot \left[ {\rm M} \right]^{1.5}$\end{document} where Rp is the overall rate of the graft polymerization, and [M] is the monomer concentration at the time t. The degree of polymerization of the isolated poly(methyl methacrylate) was found to be linearly proportional with the monomer concentration [M]. Investigations of the effect of the ratio of solvent to monomer concentration [S]/[M] on the reciprocal of the degree of polymerization showed that there was no chain transfer caused by the solvent dioxane. The number average molecular weight M?n of the polymer separated from the grafted wool was found to be within the range of 3–15.9 × 106 as determined by viscosimetry. The molecular weight distribution of the isolated poly(methyl methacrylate) samples was determined by turbidimetric titration. The following relationship was established between the volume fraction of the non-solvent, γ and the number average molecular weight M?n. of poly(methyl methacrylate): \documentclass{article}\pagestyle{empty}\begin{document}$\gamma = - 0.0285 + \frac{{50.54}}{{\sqrt[3]{{\overline M _n }}}}. $\end{document} The molecular weight distribution curves were found to be rather homogeneous indicating approximately the same chain length of the grafted poly(methy1 methacrylate) on the wool backbone. It was stated before33 that the number average molecular weight could be determined from the inflection point of the turbidimetric curves. This method can be used for determining the molecular weight of all kinds of poly(methy1 methacrylate) occurring in practice.  相似文献   

3.
Highly branched polyester resins with different amounts of trimellitic anhydride (B3 monomer) and pre-polyester diol (A2 monomer) of Mesua ferrea L. seed oil, phthalic and maleic anhydrides have been synthesized. The effect of branching of the synthesized polyester resins on physical properties such as acid values, saponification values, iodine values, etc. and rheological characteristics have been studied. The extent of reaction (P) and average degree of polymerization (DP) with respect to the acid value were determined for these resinification reactions. Performance characteristics such as impact resistance, gloss, scratch hardness, chemical resistances, etc. of the cured resins have been investigated.  相似文献   

4.
The various plots for estimating the ratio of rate constants characteristic for primary radical termination, k5/k1k2, have been examined systematically. Apart from the special case d ≡ k3k6/k52 = 1 there is no exact linear relationship between the general quantity \documentclass{article}\pagestyle{empty}\begin{document}${\rm Y \equiv (\sqrt {c_S} c_{M}/v_{Br})^{n}}$\end{document} and the general variable \documentclass{article}\pagestyle{empty}\begin{document}${\rm X \equiv (\sqrt {c_S} /c_M)^{s} (v_{Br}/c_M^{2} )^{1 - s}}$\end{document}. In any case, however, Y can he expressed as a power series of X. Therefore the best way to obtain the most favourable linear representation of Y as a function of X is to choose s and n according to the condition that the coefficient of the term quadratic in X has to disappear (n ? 2 s + d = 0) and the coefficient of the X3-term also equals 0 or is at least close to 0. Under these conditions even those data can be represented in an almost perfect linear form which show variations of the quantity \documentclass{article}\pagestyle{empty}\begin{document}$({\rm \sqrt{c_{s}}c_{M}/v_{Br})}$\end{document} by a factor of \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt{2}$\end{document} or more for different initiator concentrations cs. If additionally allowance is made for the consumption of monomer by the initiation process the desired ratio of rate constants, ks/k1k2, is obtained from the plot of Y vs. X according to the equation The application of this method is illustrated using an example from literature.  相似文献   

5.
The literature on the reaction of cytochrome c with the radiolytically generated radicals \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm e}_{{\rm eq}}^ -,^. {\rm OH,}^{\rm .} {\rm H,CO}_2^ -,{\rm O}_{\rm 2}^ -,{\rm Br}_{\rm 2}^ - $\end{document} and various organic radicals is reviewed. It would appear that negatively charged radicals, aided by the electric field of cytochrome c, react at the exposed haem edge. Uncharged organic radicals also react at this site. \documentclass{article}\pagestyle{empty}\begin{document}$ ^. {\rm H} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ ^. {\rm OH} $\end{document} are likely to reduce the prosthetic group indirectly by a tunnelling mechanism.  相似文献   

6.
Potassium persulfate modes of thermal decomposition and reactions with ethyl acrylate in aqueous solution at 50°C in nitrogen atmosphere have been investigated. It has been found that the rate of persulfate decomposition may be expressed as ?d(S2O)/dt ∝ (S2O)1.00 ± 0.06 × (M)0.92±0.05 while the steady state rate of polymerization (Rp) is given by Rp ∝ (S2O)0.50 ± 0.50 × (M)1.00 ± 0.06 in the concentration ranges of the persulfate, 10?3?10?2 (m/L), and monomer (M), 4.62?23.10 × 10?2 (m/L), i.e., within its solubility range. In the absence of monomer, the rate of persulfate decomposition was slow and first order in persulfate at the early stages of the reaction when the pH of the solution was above 3.0. The separating polymer phase was a stable colloid at low electrolyte concentrations even in the absence of micelle generators. It has been shown that the oxidation of water soluble monomeric and oligomeric radicals by the S2O ions in the aqueous phase, viz., \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M}_j^ \cdot + {\rm S}_2 {\rm O}_8^{2 - } \to {\rm M}_j - {\rm O} - {\rm SO}_3^ - + {\rm SO}_4^{ \cdot - } $\end{document} is not kinetically significant in this system. It has been found that the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M} + {\rm S}_2 {\rm O}_8^{2 - } \rightarrow{k}{\rm M} - {\rm O} - {\rm SO}_3^ - + {\rm SO}_4^{ \cdot - } $\end{document} would also lead to chain initiation at the outset of the polymerization reaction. k has been estimated as 5.41 × 10?5 (L/m/s) at 50°C. Taking kp as 103 (L/m/s), kt has been estimated as 0.168 × 106 (L/m/s). The partition confficient (β) of the monomer between the polymer phase and the aqueous phase was found to be 16 ± 2, at 50°C. The rate constant for persulfate ion dissociation has been found as 1.40 × 10?6 s?1 at 50°C.  相似文献   

7.
The heterogeneous bulk polymerization of acrylonitrile initiated by AIBN has been studied by means of an improved dilatometric technique and a new method of analysis, where the initial reaction rate (vw)0 results from the intercept of a straight line in a \documentclass{article}\pagestyle{empty}\begin{document}$ \frac {\ln \left( 1 \hbox{---} {\rm U} \right)} {{\rm e}^{{- 0,5} {\rm k}_{\rm s}{\rm t} \hbox{---} 1}}$\end{document} versus t plot. It has been found that the initial reaction rate is proportional to the square root of the initial catalyst concentration S0. The ratio of the rate coefficients of propagation and termination\documentclass{article}\pagestyle{empty}\begin{document}$\frac { {\rm k}_{\rm a} } { {\rm k}_{ {\rm w}^{2} } } $\end{document} could be calculated from the slope of a straight line passing through the origin in a plot of (vw)0 versus \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt { {\rm S}_{0} }$\end{document} and yielded a value of 280 mol 1?1.  相似文献   

8.
Propylene was polymerized in gas phase over a \documentclass{article}\pagestyle{empty}\begin{document}${\rm TiCl}_3 \cdot \frac{1}{3}{\rm AlCl}_3$\end{document} (Stauffer Type AA) Catalyst with AlEt2Cl cocatalyst both with and without H2 present. The effects of polymerization temperature, monomer concentration, catalyst composition, and hydrogen were investigated. The experiments were carried out at operating conditions approaching industrial practice.  相似文献   

9.
Application of shear is found to increase the rate of solution polymerization of acrylonitrile in N,N-dimethyl formamide (DMF) initiated by benzoyl peroxide by as much as 400 percent of the value in absence of shear. The solvent DMF acts as an inert and maintains a homogeneous reaction mass during the entire course of polymerization. To study the effect of shear systematically, a special dilatometer has been constructed such that a constant shear rate, \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \gamma \limits^. $\end{document} could be applied to the reaction mass. The rule of solution polymerization has been measured under the variation of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \gamma \limits^. $\end{document} and monomer concentration in the system. The measurements of induction time on the addition of a strong inhibitor, hydroquinone, reveal that the increase in the rate of polymerization with shear rate can be largely attributed to the change in the initiator efficiency. As a further confirmation of the above hypothesis, the decomposition of benzoyl peroxide in nitrobenzene at 80°C was measured and was found to increase significantly on application of shear. This confirms the importance of mass-transfer resistance in removal of CO2, and the increase in the rate of polymerization of acrylonitrile occurs because the decomposition of benzoyloxy radicals is favored in the forward direction. Since the polymerization of acrylonitrile is preferentially initiated by phenyl radicals, the rate of polymerization is found to increase.  相似文献   

10.
A kinetic study of the hydrolysis of 39.8 wt.-% acetyl cellulose acetate has been made as a function of pH and temperature over the pH range of 2.2–10 and temperature range of 23–95°C. The hydrolysis reaction was carried out on highly porous membranes under quasihomogeneous conditions and the data have been treated as a pseudo-first-order reaction in acetyl concentration. The reaction can be represented by the equation \documentclass{article}\pagestyle{empty}\begin{document}$k_1 {\rm = }\;k_{\rm H ^ +} \left[ {{\rm H^+}} \right]{\rm +}k_{\rm OH^-}\left[ {{\rm OH}^ - } \right] + k_{\rm H_2O} $\end{document}, and where \documentclass{article}\pagestyle{empty}\begin{document}$k_{\rm H} ^ + {\rm = 5}{\rm .24}\;{\rm x 10}^{\rm 5} {\rm exp }\left\{ {{\rm ‐ 16}{\rm .4 x 10}^{\rm 3} /RT} \right\},{\rm }k_{{\rm OH}} ^ ‐ {\rm = 1}{\rm .55}\;{\rm x 10}^{\rm 4} {\rm exp }\left\{ {{\rm ‐ 8}{\rm .1 x 10}^{\rm 3} /RT} \right\}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$k_{\rm H_2O} {= 4.25\;\times 10}^{- 2} {\rm exp }\left\{ {{- 11.5 \times 10^3 /RT}} \right\}$\end{document} (where the quantities in brackets are activities of the ions shown).  相似文献   

11.
通过偏苯三酸酐与11-氨基十一酸反应,制备了酰亚胺酸,经与己二胺聚合合成了含酰亚胺结构的聚酰胺,详细探讨了反应时间、脱水时间、脱水温度、投料比等反应条件对聚合物结构的影响,确定了最佳合成条件.合成产物具有比尼龙11高的耐热温度.  相似文献   

12.
A series of high-performance poly(ester imide)s bearing cycloaliphatic moieties was manufactured by a two-step procedure via solution polycondensation of an aromatic–aliphatic dianhydride containing preformed ester units and cyclohexanone ring in the main chain, with various aromatic diamines. The new dianhydride monomer, namely 2-oxocyclohexane-1,3-bis[4,4′-bis(trimellitate)benzylidene] dianhydride, was synthesized by the reaction between 2,6-bis(4-hydroxybenzylidene)cyclohexanone and trimellitic anhydride chloride. The chemical structure of the resulting dianhydride was confirmed by means of Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. The poly(ester imide)s from the series exhibited water uptake capacity in the range 3.45–10.09%. The onset temperatures, corresponding to the first detected thermal weight loss in the samples, ranged from 367 to 441 °C. Besides the cycloaliphatic moieties coming from the dianhydride monomer, the other aliphatic segments present in the diamine structures were responsible for improved optical performance in the resulting poly(ester imide)s, the transmittance being higher than 80% at 684 nm. © 2021 Society of Industrial Chemistry.  相似文献   

13.
Summary: A new series of thermoplastic poly(urethane‐imide)s (TPUI1‐4) containing hydroxyl groups in the backbone was synthesized from the reaction of epoxy‐terminated polyurethane prepolymers (EPU1‐4) and an imide containing diacid (DIDA) chain extender under optimized reaction conditions. EPU1‐4 was prepared through end‐functionalization of NCO‐terminated polyurethanes based on polyester polyol (CAPA) and hexamethylene diisocyanate with glycidol. A blocked isocyanate (BIC) was made from the reaction of trimethylol propane (TMP), toluene diisocyanate (TDI) and N‐methylaniline (NMA). Polymer networks were prepared from the reaction of librated isocyanate groups of BIC with hydroxyl groups of TPUIs. The starting materials and polymers were characterized by conventional spectroscopic methods and the physical, thermal and electrical properties of crosslinked networks were studied. Investigation of the recorded properties for these samples showed considerable improvement in thermal and electrical properties in comparison to common polyurethanes.

Synthetic route for preparation of TPUIs.  相似文献   


14.
Methyl-4-[bis(4-bromophenyl)amino]benzoate cation radical salts having non-nucleophilic anions such as $ {\text{SbF}}^{ - }_{6} $ , $ {\text{PF}}^{ - }_{6} $ and $ {\text{AsF}}^{ - }_{6} $ were newly prepared and found to be very active initiators for the polymerization of cyclohexene oxide at room temperature, in dichloromethane without any external stimulation. The effects of counter ion structure, salt and monomer concentration on the polymerization yield and molecular weight, and the mechanism of initiation are presented.  相似文献   

15.
A novel diimidodialcohol monomer, 1,4‐bis[2′‐trifluoromethyl‐4′‐(4″‐glycolformate)‐ trimellitimidophenoxy]benzene (BGTB), was synthesized and characterized. It was reacted with isophthalic acid, maleic anhydride and propylene glycol to produce a novel unsaturated poly(ester‐imide) (BGTB‐UPEI) with imide and trifluoromethyl groups in the polymer backbone. The BGTB‐UPEI resin was diluted with reactive monomer (styrene) to give a low‐viscous poly(ester‐imide)/styrene (BGTB‐UPEI/St) mixed solution, which was then thermally cured to yield thermosetting BGTB‐UPEI/St composite. The effect of processing parameters such as the curing temperature and curing time, reactive monomer concentration and initiator amount on the curing reaction was systematically investigated. Experimental results indicated that the thermally cured BGTB‐UPEI/St composite exhibited much better thermal, mechanical, electrical insulating properties and chemical resistance than the standard unsaturated polyester/polystyrene composite. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
A complex with the formula [CuL(H2O)2]{[CuL][Fe(CN)6]}2·2H2O, where L=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, has been synthesized and crystallographically characterized. The structure is composed of a one-dimensional zigzag chain of units, and [CuL(H2O)2]2+ units. The one-dimensional zigzag chain extents through linkages. The adjacent two polymer chains are linked by the hydrogen bonding between [CuL(H2O)2]2+ and [Fe(CN)6]3–, forming a 3D supramolecular structure with inner hydrophilic channels. Magnetic susceptibility measurements show no exchange interaction between the Cu(II) and Fe(III) ions due to the longer (axial) bond length.  相似文献   

17.
The generation of chlorine dioxide from the reaction between hypochlorous acid and chlorite with or without an initial chloride addition has been studied under slightly acidic conditions. Chloride (Cl-), one of the products from the reaction, not only changes the reaction stoichiometry, but also alters the rate law. It was found that the formation of chlorine dioxide from the HOCI-ClO2- system consists of two distinct parts, one is promoted by chloride, the other is independent of chloride. The overall kinetics of the chlorine dioxide generation from the reaction is: This model can very well predict the reaction under the following conditions: $ 273 - 303{\rm K},\left[ {ClO_2^ - } \right] = 0.001 - 0.00267\;{\rm mol}/{\rm L},\left[ {ClO_2^ - } \right]/\left[ {HOCl} \right] = 2,\;{\rm and}\;{\rm pH}\;3.86 - 4.91 $  相似文献   

18.
A series of carbazole‐containing water‐dispersible poly(acrylic acid)‐b‐(9‐(4‐vinylbenzyl)‐9H‐carbazole) block copolymers (poly(AA)‐b‐poly(VBK)) and water‐soluble poly(methacrylic acid‐ran‐(9‐(4‐vinylbenzyl)‐9H‐carbazole)) (poly(MAA‐ran‐VBK)) random copolymers were synthesised in a controlled manner (i.e. low polydispersities $(\overline {M_{{\rm w}} } /\overline {M_{n} } < 1.3)$ by nitroxide‐mediated polymerisation (NMP) using an SG1‐based alkoxyamine initiator, BlocBuilder. Poly(AA)‐b‐poly(VBK) block copolymers were most easily accessed by using poly(AA) in its protected form as the macroinitiator for the 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) block. Controlled polymerisation of MAA was accomplished using an excess of 10 mol.% SG1 relative to BlocBuilder with VBK as controlling co‐monomer (initial molar feed content fVBK,0 = 0.03–0.20) in dimethylformamide at 80°C. Poly(MAA‐ran‐VBK) copolymers with a final VBK molar composition of FVBK < 0.30 resulted in water‐soluble copolymers. In addition, as macroinitiators, poly(MAA‐ran‐VBK)s were sufficiently pseudo‐living to reinitiate a second batch of monomer (90 mol.% methyl methacrylate with styrene) in organic solvent and by ab initio, surfactant‐free emulsion polymerisation. In both cases, low polydispersity, amphiphilic block copolymers resulted $(\overline {M_{{\rm w}} } /\overline {M_{{\rm n}} } < 1.3)$ . © 2012 Canadian Society for Chemical Engineering  相似文献   

19.
Three series of novel modified poly(ether–imide–amide)s (PEIAs) having pendent benzazole units were prepared from diimide–dicarboxylic acids, including 2-[3,5-bis(4-trimellitimidophenoxy) phenyl]benzimidazole, 2-[3,5-bis(4-trimellitimidophenoxy) phenyl]benzoxazole, and 2-[3,5-bis(4-trimellitimidophenoxy) phenyl]benzothiazole, with various diamines by direct polycondensation in N-methyl-2-pyrrolidone with triphenyl phosphite and pyridine as condensing agents. These new diimide–dicarboxylic acids containing ether linkages and benzazole pendent groups were synthesized by the condensation reaction of 5-(2-benzimidazole)-1,3-bis(4-aminophenoxy)benzene, 5-(2-benzoxazole)-1,3-bis(4-aminophenoxy)benzene, or 5-(2-benzothiazole)-1,3-bis(4-aminophenoxy)benzene with trimellitic anhydride, respectively. All of the polymers were obtained in quantitative yields with inherent viscosities of 0.39–0.65 dL/g. For comparative purposes, the corresponding unsubstituted PEIAs were also prepared by the reaction of a diimide–dicarboxylic acid monomer lacking benzazole pendent groups, namely, 3,5-bis(4-trimellitimidophenoxy) phenyl, with the same diamines under similar conditions. The solubilities of the modified PEIAs in common organic solvents and their thermal stability were enhanced compared to those of the corresponding unmodified PEIAs. The glass-transition temperature, 10% weight loss temperature, and char yields at 800°C were 19–31°C, 22–57°C and 4–8% higher, respectively, than those of the unmodified polymers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
For film blowing of polyethylene it has been shown previously that melt elongation is very powerful for polymer characterization. With two types of rheometers, simple (also called “uniaxial”) elongational tests as well as creep tests can be performed homogeneously. In simple elongation, the melts of branched polyethylene show a remarkable strain hardening. With respect to their advantages and disadvantages, these rheometers complement each other. For multiaxial elongations the various modes of deformation can be performed by means of the rotary clamp technique. With the strain rate components ordered such that \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document}11 ? \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document}22 ≥ \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document}33, the ratio m = \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document}22/\documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document}11 characterizes the test mode. The Stephenson definition of the elongational viscosities makes use of the linear viscoelastic material equation and proves to be very efficient because the linear shear viscosity (t) (“stressing” viscosity) can act as the reference for the nonlinear behavior in elongation. Results are given for polyisobutylene measured not only in simple, equibiaxial, and planar elongations, but also in new test modes with a change of m during the deformation. This allows one to investigate the consequences of a deformation-induced anisotropy of the rheological behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号