首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration and separation of some metallic ions have been achieved by complexing these species with suitable macromolecules or with water-soluble polymers in ultrafiltration. The effect of water-soluble poly(vinyl alcohol) (PVA) on the concentration and separation of Cu2+, Ni2+, and Fe3+ ions have been investigated by using EC-PEG4000 alloy membranes in ultrafiltration experiments. The water permeability of the membranes has been measured at various pressures. The permeability of these membranes for metal ions, however, has been recorded at constant pressure but at different pH values. The highest water-permeable membrane is also permeable for Cu2+ and Ni2+, but it shows a considerable retention for Fe3+, probably as a result of the hydrolysis of Fe3+. The retentions of metallic ions and metallic ion-PVA couples have been determined at constant pressure but varying pH and polymer concentration values. It has been shown that Fe3+/Ni2+ pairs can well be separated by using PVA. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
For the safe and trouble‐free operation of a manufacturing plant and the safe storage of acrylic, as well as methacrylic monomers, it is important to know the polymerization stability as a function of the process parameters (temperature, oxygen concentration, and impurities, e.g., metal ions). Contamination with metal ions can be caused by the corrosion of steel units. Therefore, the influence of the metal ions Cr3+, Fe3+, Ni2+ and Cu2+ in the concentration range of 0–10 ppm (g g–1) on the polymerization behavior and the oxygen consumption of acrylic and methacrylic acid were examined in this work. It was shown that Cr3+, Ni2+, and Cu2+ ions extend the inhibition period of acrylic acid (AA) and methacrylic acid (MAA) and reduce the O2 consumption. Fe3+ ions, however, cause a decrease of the inhibition period and in the case of AA an increase of the O2 consumption, which leads, in the end, to a faster unintentional polymerization. Therefore, alloys which contain iron should be avoided as far as possible in the construction of AA plants. Fe3+‐ions show the opposite influence towards MAA, here the presence of Fe3+ shows a stabilizing effect.  相似文献   

3.
《分离科学与技术》2012,47(6-7):429-443
Abstract

The adsorption behavior of metal ions in the formic acid-sodium formate system using unimpregnated as well as impregnated silica gel G as thin layers has been studied. A remarkable result of this study is the dramatic selectivity of impregnated silica gel G thin layers when compared to the corresponding unimpregnated silica gel G thin layers. This impregnation effect provides us with a new adsorbent phase which is sufficiently stable in the formic acid-sodium formate medium. Some important ternary separations have been achieved on silica gel G thin layers. Al3+, Ni2+, Fe3+, and Pb2+ have been qualitatively separated from mixtures of other ions. Cu2+ has been selectively separated on impregnated silica gel G thin layers. The semi-quantitative determination of nine metal ions on impregnated silica gel G layers has also been attempted.  相似文献   

4.
Summary A polymer having fluorescent pyridylbenzoxazole groups has been prepared for the purpose of detecting of metal ions. Metal ions such as Co2+, Ni2+, Cu2+ and Fe2+ were found to coordinate with the bipyridyl-like fluorescent benzoxazole chromophores. Among the metal ions investigated, the Fe2+ ion was shown to be the most effective in terms of its fluorescence quenching ability. The addition of a metal scavenger 2,2'-dipyridyl to the metal ion-quenched polymer solution resulted in the recovery of the fluorescence. Received: 2 November 1999/Revised version: 19 December 1999/Accepted: 22 December 1999  相似文献   

5.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

6.
In this work, a boron-doped diamond (BDD) electrode was evaluated for the electroanalytical determination of millimolar concentrations of Cu2+, Fe2+ and Fe3+ using chronoamperometry. The interfering role that each ion plays on the quantitative determination of other metal ion concentrations was also assessed. No interference from other metal ions was observed when Fe3+ and Fe2+ were analysed. By contrast, reduction of Fe3+ took place at the same potential where [Cu2+] was measured causing a minor interference to the Cu2+ signal. A multiple linear regression (MLR) calibration model was made for each analyte using real bioleaching samples, which demonstrated high coefficients of determination and adequate standard errors. The methods developed were used to monitor bioleaching of chalcopyrite for 4 months. The electroanalytical methods are particularly well-suited for analysing Cu2+, Fe3+ and Fe2+ concentration in acidic mine drainage (AMD) and bioleaching environments.  相似文献   

7.
3-Carboxy-4-hydroxyacetophenone (CHAP) was polycondensed with various proportions of formaldehyde using alcoholic alkali as catalyst. The resin samples, designated as CHAP-F, have been characterized by elemental analyses and IR spectroscopy, by estimation of their number average molecular weights (M?n), by measurement of intrinsic viscosity, and by TGA. Polymeric metal chelates of one CHAP-F sample with Cu2+, Fe3+, Co2+, Ni2+, and UO22+ ions have been prepared and characterized. Ion-exchanging properties of one CHAP-F resin sample for Fe3+, Cu2+, and Ni2+ metal ions are studied by the application of the batch-equilibration method.  相似文献   

8.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

9.
The sorption properties of the commercially available cationic exchange resin, Amberlite IRC‐718, that has the iminodiacetic acid functionality, toward the divalent metal‐ions, Fe2+, Cu2+, Zn2+, and Ni2+ were investigated by a batch equilibration technique at 25°C as a function of contact time, metal ion concentration, mass of resin used, and pH. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Fe2+ and that the metal‐ion uptake follows the order: Fe2+ > Cu2+> Zn2+ >Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
《分离科学与技术》2012,47(15):3770-3791
Abstract

The present study reports the potential of mango peel waste (MPW) as an adsorbent material to remove Cu2+, Ni2+, and Zn2+ from constituted metal solutions and genuine electroplating industry wastewater. Heavy metal ions were noted to be efficiently removed from the constituted solution with the selectivity order of Cu2+ > Ni2+ > Zn2+. The adsorption process was pH-dependent, while the maximum adsorption was observed to occur at pH 5 to 6. Adsorption was fast as the equilibrium was established within 60 min. Maximum adsorption of the heavy metal ions at equilibrium was 46.09, 39.75, and 28.21 mg g for Cu2+, Ni2+, and Zn2+, respectively. Adsorption data of all the three metals fit well the Langmuir adsorption isotherm model with 0.99 regression coefficient. Release of alkali and alkaline earth metal cations (Na+, K+, Ca2+, Mg2+) and protons H+ from MPW, during the uptake of Cu2+, Ni2+, and Zn2+, and EDX analysis of MPW, before and after the metal sorption process, revealed that ion exchange was the main mechanism of sorption. FTIR analysis showed that carboxyl and hydroxyl functional groups were involved in the sorption of Cu2+, Ni2+, and Zn2+. MPW was also shown to be highly effective in removing metal ions from the genuine electroplating industry effluent samples as it removed all the three metal ions to the permissible levels of discharge legislated by environment protection agencies. This study indicates that MPW has the potential to effectively remove metal ions from industrial effluents.  相似文献   

11.
Novolac resin was modified with 3‐aminopropyltrimthoxysilane to obtain phenol‐formaldehyde‐aminopropylsiloxane resin (PF‐APS). Fourier transformation infra‐red spectra, thermogravimetric analysis, elemental analysis, and pH‐metric titration were used to characterize PF‐APS. Its chemical formula was suggested to be C14H12.49N0.1O2Si0.1. The resin shows high experimental metal ions uptake capacity within short time of equilibration. The metal capacity was determined by atomic absorption spectrometry to be 0.787 mEq Cu/g. Maximum separation efficiencies of Cu2+, Cr3+, and Ni2+ from aqueous solutions on PF‐APS were at pH 8.0 and time of stirring 60 min; 94.0%, 90.8%, 83.2%, respectively. No significant interference from the background ions Na+, Cl?, and was observed on the separation process. The heavy metal ions were eluted using 0.01 mol L?1 EDTA at 65°C releasing >94% of the separated metal ions. The method of separation was applied successfully to remove the heavy metal ions Cu2+, Cr3+, and Ni2+ from electroplating wastewater from Dekirnis, Dakahlia Governorate, Egypt. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40993.  相似文献   

12.
The chelation behavior of poly(β‐diketone), polymer I, and poly(β‐diketone) oxime, polymer II, toward the divalent metal ions, Cu2+, Zn2+, Ni2+, and Cd2+, and the trivalent lanthanide metal ions, La3+, Nd3+, Sm3+, Gd3+, and Tb3+ was investigated by a batch equilibration technique as a function of contact time, pH, and counter ion. Polymer II exhibited improved chelation characteristics toward lanthanide metal ions in comparison with polymer I and the metal‐ion uptake follows the order Tb3+ ≈ Gd3+ ≈ Sm3+ > Nd3+ ≈ La3+. On the other hand, polymer I showed relatively higher capacity than polymer II, toward the investigated divalent metal ions, where the metal‐ion uptake follows the order Cu2+ > Cd2+ ≈ Zn2+ > Ni2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A series of differently crosslinked polyacrylamide chelating resins were prepared, using N,N′-methylene-bis-acrylamide as the crosslinking agent. The crosslinked resins were functionalized by the reaction with ethylene diamine to get amino group capacities varying from 4.2 to 1.1 mequiv/g. The maximum adsorption capacities of the lightly crosslinked resin for Fe3+, Fe2+, Ni2+, and Cu2+ are 3.62, 4.22, 1.48, and 1.67 mequiv/g, respectively. The adsorbed metal ions can be quantitatively desorbed. The adsorption rate and the influence of pH on the adsorption of metal ions were examined. The resins can be used for the separation between different metal ions as well as the ions in different valence states (e.g., Fe3+ and Fe2+). The resin is amenable for continuous process and can be regenerated several times.  相似文献   

15.
《分离科学与技术》2012,47(2):398-421
Abstract

Ultrafiltration membranes are largely being applied for heavy metal ion separations from aqueous streams. Cellulose acetate (CA) and aminated polysulfone (APSf) based membranes are prepared in the absence and presence of the polymeric additive, polyethylene glycol, PEG 600, in various compositions. The effects of polymer blend composition and additive concentration on compaction, pure water flux, membrane hydraulic resistance, water uptake, and contact angle has been investigated to evaluate the performance of the membranes and the results are discussed. Surface and cross-sectional morphologies of membranes were also analyzed using scanning electron microscopy. Toxic heavy metal ions such as Cu2+, Ni2+, Cd2+, and Zn2+ were separated by the blend membranes using polyethyleneimine (PEI) as polymeric ligand. The rejection and permeate flux efficiencies of the blend membranes are compared with pure cellulose acetate membranes.  相似文献   

16.
The chelating polymer-bearing triazolylazophenol moiety as the functional group was synthesized, its metal adsorption properties for 6 divalent heavy metal ions; Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were investigated. The capacity of the polymer for Cu2+ achieved 8.7 mEq/g in pH 5.3 solution. The polymer showed remarkable color changes from orange to red violet or blue violet with its chelations to the heavy metal ions. The metal adsorption rates of the polymer were rapid in performing complete capacity saturation of heavy metal ions in about 30 min. The capacities varied little the presence of alkali or alkaline earth metal ions in solutions. The perfect elimination of metals from the polymer–M2+ chelates were performed with mineral acid solutions. The metal ions; Cu2+ and Ni2+ in plating-process solutions were effectively removed by the chelating polymer, and the polymer can be practically used for the removal of these ions from waste water.  相似文献   

17.
《Dyes and Pigments》2012,92(3):378-382
A bis-rhodamine based fluorescent chemosensor for naked-eye detection of Cu2+ with enhanced sensitivity as compared to mono-rhodamine derivative has been synthesized, and its selectivity for Cu2+ in the presence of other competitive metal ions (Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, and Pb2+), and application in bio-imaging are demonstrated.  相似文献   

18.
Uniform polyaniline (PANI) nanoparticles with typical sizes of about 50 nm were electropolymerized on indium tin oxide surfaces in the presence of Co2+, Ni2+, Cu2+, or Zn2+. According to shaping theory, we first suggest the reason forming PANI spherical particles. Their conductivity, UV‐vis spectra, FTIR spectra, X‐ray diffraction, and thermogravimetric analysis were investigated. The conductivities and crystallinity of PANI doped with these ions are higher than those of PANI doped with HCl (PANI/HCl). Both UV‐vis absorption spectra and FTIR spectra indicate the interactions between Co2+, Ni2+, Cu2+, or Zn2+ and PANI chains. TG analysis also shows that the thermal stability of PANI doped by Co2+, Ni2+, Cu2+, or Zn2+ is lower than that of PANI/HCl. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
《分离科学与技术》2012,47(2):335-358
Abstract

The determination of trace metal ions usually requires previous separation and preconcentration stages in order to cope with low levels and to remove the interfering components. Nowadays emphasis is given to the utilization of microorganisms because of their great ability to absorb metal ions from aqueous solution. In this paper, for this, Zn2+, Fe3+, Cu2+, Cd2+, Ni2+, Co2+, and Pb2+ ions at trace levels have been separated and preconcentrated on a column containing a bacterium, Anoxybacillus gonensis immobilized on Diaion HP-2MG as a new biosorption system prior to their atomic absorption spectrometric determinations. The effects of some analytical parameters were investigated. Optimum pH values were found to be 6 for Zn, Fe, Cu and Pb, 8 for Cd, Ni, and Co. Recoveries of Zn2+, Fe3+, Cu2+, Cd2+, Ni2+, Co2+, and Pb2+ were 95 ± 3, 98 ± 6, 96 ± 2, 98 ± 2, 97 ± 2, 95 ± 4 and 95 ± 3 at 95% confidence level, respectively. No significant matrix interferences on the quantitative recoveries of the analyte ions were observed. Preconcentration factors of the anlayte ions were calculated as 50 for Zn, Cd and Pb, and 75 for Fe, Cu, Ni, and Co. The limits of detection for the analyte ions were in the range 0.2–1.3 µg L?1. The procedure was validated by spike addition and analysis of standard reference materials.  相似文献   

20.
《分离科学与技术》2012,47(16):2197-2201
Abstract

Copper has been selectively extracted from aqueous solutions containing metal ions (Cu2+, Co2+, Ni2+, Fe2+, Fe3+, Mg2+, and Zn2+) by a liquid membrane technique. Experiments were carried out in a beaker equipped with a baffle, and the system was stirred by a variable-speed mixer equipped with a turbine impeller; the mixing speed was 300 rpm. A typical membrane formulation was 2.0% Span 80, 4.0% LIX 860, and 94.0% of commercial kerosene, all values being by weight. Copper was selectively separated and concentrated from both synthetic and natural aqueous mine solutions containing various metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号