首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用普通市售128环氧树脂经过分子蒸馏,去除轻馏分和多聚体重组分后,得到双酚A分子环氧树脂,牌号为JF-9955A。通过红外光谱和液相色谱分析,基础性能和Na+含量检测以及对其酸酐固化物性能的测试将JF-9955A与国外陶氏化学的DER 332、BakeliteEPR 162高纯度双酚A环氧树脂进行了对比。结果表明,JF-9955A具有粘度低,纯度高,可水解氯及其他离子杂质含量低等特点,各项性能指标达到国外同类产品水平。  相似文献   

2.
二环戊二烯双酚型环氧树脂及环氧酯漆的合成研究   总被引:2,自引:0,他引:2  
本文用二环戊二烯和苯酚合成二环戊二烯双酚,再用它与环氧氯丙烷合成二环戊二烯双酚型环氧树脂,并用这种环氧树脂与亚麻油酸合成气干型环氧酯漆,测试了漆膜的性能。实验证明,适当的酚超量和较低的滴加二环戊二烯的反应温度可控制二环戊二烯的自聚反应。  相似文献   

3.
Diglycidyl ether of bisphenol fluorene (DGEBF) and 9,9‐bis(4‐aminophenyl) fluorene (BPF) were synthesized to introduce more aromatic structures into an epoxy system, and their chemical structures were characterized with Fourier transform infrared spectroscopy, NMR, and mass spectrometric analysis. The dynamic curing behavior of the DGEBF/BPF system was investigated with differential scanning calorimetry. DGEBF was cured with BPF, diaminodiphenylsulfone (DDS), and diaminodiphenylmethane (DDM), and E‐44 (bisphenol A epoxide) was also cured with BPF for comparison. The thermal properties of the obtained polymers were evaluated with dynamic mechanical thermal analysis and thermogravimetric analysis. The cured DGEBF/BPF system showed a remarkably higher glass‐transition temperature, better thermal stability and lower moisture absorption in comparison with the general bisphenol A epoxy resin/BPF system but approximated the heat resistance of the DGEBF/DDS and DGEBF/DDM systems. Such properties make this epoxy system very promising for heat‐resistant applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In this study, an epoxy based on eugenol and an anhydride curing agent based on rosin were prepared. Curing of the eugenol epoxy with a commercial anhydride curing agent and with the rosin‐derived anhydride curing agent was studied. For comparison, a commercial bisphenol A type epoxy, DER353, was also selected in the curing study. The syntheses of the eugenol epoxy and rosin anhydride were investigated and the chemical structures of the products and intermediates were characterized using 1H NMR and Fourier transform infrared spectroscopies. Non‐isothermal curing of the eugenol epoxy with hexahydrophthalic anhydride and the rosin‐derived maleopimaric acid was studied using differential scanning calorimetry. Thermomechanical properties and thermal stability of the cured epoxy resins were evaluated using dynamic mechanical analysis and thermogravimetric analysis, respectively. Addition of 2‐ethyl‐4‐methylimidazole as catalyst greatly decreased the curing temperature and promoted the completion of cure reactions. The results suggest that the eugenol epoxy and the bisphenol A type epoxy have similar reactivity, dynamic mechanical properties and thermal stability. © 2013 Society of Chemical Industry  相似文献   

5.
A series of advanced epoxy resins with various epoxy equivalent weights were synthesized from a reactive phosphorus‐containing diol, 2‐(6‐oxido‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene and diglycidyl ether of bisphenol A and then cured with 4,4′‐diaminodiphenyl sulfone, phenol novolac, or dicyandiamide. The parameters of the polymerization reaction (such as reaction time, catalyst) are discussed in this article. Thermal properties of cured epoxy resins were studied using differential scanning calorimetry, dynamic mechanical analysis, and thermal gravimetric analysis. The flame retardancy of cured epoxy resins was tested by limiting oxygen index. The relations between thermal properties, flame retardancy, and epoxy equivalent weights were also studied. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 429–436, 2000  相似文献   

6.
通过有机磷化合物9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与双酚A型环氧树脂反应合成了一种含磷环氧树脂。通过跟踪测定环氧当量研究了开环反应过程,并用傅里叶红外光谱仪对产物结构进行了表征;采用差示扫描量热法和平板凝胶法表征了树脂体系的固化特性;依据UL94垂直燃烧法研究了磷含量与树脂体系阻燃性能的关系,采用热重分析(TGA)研究了不同含磷量环氧树脂的残炭率及裂解性能;采用差示扫描量热仪和电子万能拉伸试验机研究了阻燃环氧树脂固化物的耐热性和力学性能。结果表明,DOPO与双酚A型环氧树脂在170 ℃下6 h可完成开环加成反应;含磷环氧树脂的固化温度较双酚A型环氧树脂提高;磷含量为2.0 %(质量分数,下同)时,含磷环氧树脂固化物阻燃性能达UL94 V-0级,残炭率为23 %;其固化物的耐热性和力学性能较双酚A型环氧树脂无明显下降。  相似文献   

7.
The high modulus carbon fiber (M40J) sized by epoxy resin E51 and E20 reinforced bisphenol A dicyanate (2,2′‐bis(4‐cyanatophenyl) isopropylidene resin composite was prepared in order to investigate the influence of epoxy sizing of the fiber on the properties of the composite. Differential scanning calorimetry (DSC) and fourier transforms infrared (FTIR) analysis showed that epoxy resin have catalytic effect on cure reaction of cyanate ester. Mechanical properties of the composite revealed that M40J fiber sized by epoxy resin could improve the flexural strength and interlaminar shear strength of M40J/bisphenol A dicyanate composites. The micro‐morphology of the composite fractures was studied by means of scanning electron microscopy (SEM). Reduced flaws were observed in the M40J‐bisphenol A dicyanate interface when the sized fiber was used. Water absorption of the composites was also investigated. It was found that the water absorption descended at the initial boiling stage (12 h). POLYM. COMPOS, 27: 591–598, 2006. © 2006 Society of Plastics Engineers  相似文献   

8.
水基光敏环氧丙烯酸酯的合成   总被引:5,自引:0,他引:5  
以环氧豆油、双酚A环氧树脂、丙烯酸和马来酸酐合成了具有羧基的环氧丙烯酸酯齐聚物,经胺中和后,水性化,可得自乳化光敏树脂水分散体系。并且用LR表征了环氧树脂与丙烯酸的混合物。流变学研究显示其水稀释过程体系粘度变化有明显的异常现象。考察了在光引发剂作用下,树脂中组成最终对光固化涂层综合性能的影响。  相似文献   

9.
溴化环氧树脂合成的研究   总被引:6,自引:0,他引:6  
本文主要介绍了由环氧氯丙烷(ECH)与不同比例的四溴双酚A(TBBPA)和双酚A(BPA)混合物合成溴化环氧树脂。也可以根据溴含量和分子量的不同要求,先合成液态双酚A型环氧树脂或不同溴含量的液态溴化环氧树脂,再与TBBPA或BPA,或BPA和TBBPA的混合物反应,合成不同活性、不同溴含量的溴比环氧树脂即二步法。  相似文献   

10.
为了解决釜式反应器制备双酚A环氧丙烯酸树脂(EA)过程中存在温度控制难、反应周期长和稳定性差等问题,采用具有高效传热和传质能力的微结构反应器来合成EA。研究了反应温度、流速、停留时间、催化剂种类及用量、管径对反应的影响,优化出最佳制备工艺。采用傅里叶红外光谱(FT-IR)对产物EA结构进行了表征。结果表明:应用微结构反应器可以成功制备EA。最佳制备条件如下:反应温度140 ℃,流速3.05 mL/min,停留时间4 min,管径1 mm,催化剂选用三苯基膦且用量为双酚A环氧树脂(EP)质量的2%。在最佳制备条件下,丙烯酸和环氧基的转化率分别为99.1%和96.3%。固化涂膜的附着力、铅笔硬度和耐磨性等,均达到了使用要求。  相似文献   

11.
In this work, a new material based on an epoxy thermoset modified with a thermoplastic filled with silica nanoparticles was investigated. When thermoplastic particles are filled with nanoparticles with unique properties such as high efficiency for absorbing ultraviolet light, electric or magnetic shielding, high electrical conductivity, and high dielectric constants, more than an enhancement of the mechanical properties is expected to be achieved for modified epoxy‐based thermosets. Particles of poly(methyl methacrylate) (PMMA) filled with silica nanoparticles were used to modify a thermoset based on a full reaction between diglycidyl ether of bisphenol A and 3‐(aminomethyl)benzylamine. When the preformed thermoplastic particles were mixed with the reactive constituents of the epoxy system under certain curing conditions in which total miscibility was avoided, uniform particle dispersions could be obtained. The relationships between the composition, morphology (nanoscale and microscale), glass‐transition temperature, mechanical properties, and fracture toughness were considered. Four main results were obtained for consideration of the potential of silica‐filled PMMA as an important modifier of brittle epoxy thermoset systems: (1) a good dispersion of the silica nanoparticles in the PMMA domains, (2) a good dispersion of the silica‐filled PMMA microparticles in the epoxy matrix, (3) the possibility of partial dissolution of the PMMA‐rich domains into the epoxy system, and (4) a slight increase in properties such as the hardness, indentation modulus, and fracture toughness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
党婧  王汝敏  韩小勇  程雷 《粘接》2010,(2):34-37
以双酚A环氧树脂E-51与DOPO(9,10-dihydrooxa-20-phosph henanthrene-10-oxide)合成含磷环氧树脂(ED),以三聚氰胺与苯酚反应制备含氮的酚醛固化剂MFP。采用红外光谱对产物进行分析表征,采用热失重分析和UL94V垂直燃烧测试考查树脂的热性能和阻燃性能,同时探讨了阻燃环氧树脂的力学性能。结果表明,随着含磷量的增加,环氧树脂的热稳定性和阻燃性能得到改善,当含磷量为3%时,环氧树脂的初始分解温度高达330℃以上,在700℃下的残炭率达到30%以上,阻燃性能均达到了UL-94 V—0级。而试样的力学性能则随含磷量的增加而降低。  相似文献   

13.
In this article, epoxy foams comprised of diglycidyl ether of bisphenol‐A (DGEBA) based epoxy resin E31 and E51, polyamide resin, and water were prepared by microwave irradiation method. The structure and properties of epoxy foams were analyzed by FTIR, TGA, SEM, and DMA methods. The density and compressive performance of epoxy foams was also determined. The results indicated that the epoxy foams had excellent compressive performance and the preparation of epoxy foam by microwave irradiation was high efficiency and convenient. The composition has great effect on density, foam structure, dynamical mechanic performance, and thermal degradation behavior of epoxy foams. The epoxy foam with density from 0.08 g cm?3 to 1.05 g cm?3 can be obtained by varying ratio of E51 and E31 to control the viscosity of mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Reactive interfacial agents are often used to homogenise the morphology of immiscible polymer blends and to improve the level of adhesion between the phases to achieve enhanced properties. This paper demonstrates the ability of hydroxyl methyl bisphenol A (HMBPA) to function as a reactive interfacial agent (compartibilizer) in a nitrile-epoxy film adhesive made from nitrile rubber (NBR) and solid epoxy resin blend. The curing of the adhesive film was achieved at 170° C by adding dicyandiamide, a latent curing agent for epoxy resin, and rubber vulcanising agents. Hydroxyl methyl bisphenol A resins with different hydroxyl methyl content, synthesised by the base-catalysed reaction of bisphenol A and formaldehyde in various mole ratios, were used to compatibilize a blend of nitrile rubber (NBR) and epoxy resin 50/50wt/wt. The effect of addition of HMBPA on the morphology, adhesive, thermal, and mechanical properties of the adhesive film was investigated. The nitrile-epoxy adhesive films were characterised by measurements of adhesive joint strength, stress-strain properties, DSC, TGA, TMA, DMA, and SEM. Results revealed that significant improvement in joint strength occurred at low levels of HMBPA, and the optimum strength was obtained at about 15 wt% of HMBPA in the blend. The hydroxyl methyl content in HMBPA was found to influence the properties of the adhesive film. The concept of strengthening the interphase between NBR and epoxy through the coupling reactions of HMBPA was used for interpreting the results. The effect of addition of silica, alumina, and aluminium fillers on the properties of the nitrile-epoxy adhesive film was also studied, and a comparison of properties with and without HMBPA is presented.  相似文献   

15.
Reactive interfacial agents are often used to homogenise the morphology of immiscible polymer blends and to improve the level of adhesion between the phases to achieve enhanced properties. This paper demonstrates the ability of hydroxyl methyl bisphenol A (HMBPA) to function as a reactive interfacial agent (compartibilizer) in a nitrile-epoxy film adhesive made from nitrile rubber (NBR) and solid epoxy resin blend. The curing of the adhesive film was achieved at 170° C by adding dicyandiamide, a latent curing agent for epoxy resin, and rubber vulcanising agents. Hydroxyl methyl bisphenol A resins with different hydroxyl methyl content, synthesised by the base-catalysed reaction of bisphenol A and formaldehyde in various mole ratios, were used to compatibilize a blend of nitrile rubber (NBR) and epoxy resin 50/50wt/wt. The effect of addition of HMBPA on the morphology, adhesive, thermal, and mechanical properties of the adhesive film was investigated. The nitrile-epoxy adhesive films were characterised by measurements of adhesive joint strength, stress-strain properties, DSC, TGA, TMA, DMA, and SEM. Results revealed that significant improvement in joint strength occurred at low levels of HMBPA, and the optimum strength was obtained at about 15 wt% of HMBPA in the blend. The hydroxyl methyl content in HMBPA was found to influence the properties of the adhesive film. The concept of strengthening the interphase between NBR and epoxy through the coupling reactions of HMBPA was used for interpreting the results. The effect of addition of silica, alumina, and aluminium fillers on the properties of the nitrile-epoxy adhesive film was also studied, and a comparison of properties with and without HMBPA is presented.  相似文献   

16.
C36二聚酸与双酚A型环氧树脂(DGEBA)反应制备出分子结构中含有疏水烷烃链的端环氧基预聚物(DAMPE),用傅里叶红外光谱仪(FT-IR)对其结构进行了表征。以不同用量的DAMPE与环氧树脂混合后用等物质的量的改性异佛尔酮二胺固化剂(IPDA)固化,制得了不同C36二聚酸含量的改性环氧树脂涂料。测试了二聚酸改性环氧树脂涂料的力学性能及耐水扩散性。研究结果表明:C36二聚酸改性环氧树脂涂料具有较好的柔韧性、耐冲击性能,以及优良的耐水分子渗透性能。  相似文献   

17.
以聚丙二醇(PPG)和双酚A型环氧树脂为原料,使用特殊催化剂合成了水性环氧树脂涂料用疏水性剂基体,并在其中添加疏水性微粒子WS-12组成疏水化剂。使用该疏水化剂与水性环氧树脂、通用环氧树脂按一定比例混合调制成水性环氧涂料复合物,并研究和评价其固化物的力学性能及涂膜的相关性能。研究结果表明,当m(水性环氧树脂):m(疏水化剂):m(环氧树脂6002)=20:10:70时,树脂固化物及涂膜的力学与物理性能最佳。  相似文献   

18.
Wheat straw Biolignin? was used as a substitute of bisphenol‐A in epoxy resin. Synthesis was carried out in alkaline aqueous media using polyethyleneglycol diglycidyl ether (PEGDGE) as epoxide agent. Structural study of Biolignin? and PEGDGE was performed by solid‐state 13C NMR and gel permeation chromatography, respectively, before epoxy resin synthesis. Biolignin? based epoxy resins were obtained with different ratios of Biolignin? : PEGDGE and their structures were analyzed by solid‐state 13C NMR. The crosslinking of PEGDGE with Biolignin? was highlighted in this study. Properties of Biolignin? based epoxy resins were analyzed by differential scanning calorimetry and dynamic load thermomechanical analysis as well as compared with those of a bisphenol‐A epoxy‐amine resin. Depending on the epoxy resin formulation, results confirmed the high potential of Biolignin? as a biosourced polyphenol used in epoxy resin applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
环氧树脂的合成与应用研究概况   总被引:1,自引:0,他引:1  
程相春 《当代化工》2011,40(5):514-516
环氧树脂因具有优良的物理机械性能、化学稳定性、耐化学腐蚀性、耐热及粘接性能而得到广泛应用.其种类繁多且合成方法各异.文章以双酚A型环氧树脂为例对环氧树脂合成工艺及其在不同领域的几种应用形式分别进行了综述.  相似文献   

20.
UV‐curing processes are used in industrial applications because of their advantages such as high‐speed applications and solvent‐free formulations at ambient temperature. UV‐curable epoxy acrylate resins containing arylene ether sulfone linkages (EAAES) were synthesized through the condensation of bis(4‐chlorophenyl)sulphone and bisphenol‐A, followed by end‐caping of epichlorohydrin and subsequently acrylic acid. UV‐cured coatings were formulated with epoxy acrylates, reactive diluents such as pentaerythritol tri‐acrylate and pentaerythritol dia‐crylate and photoinitiator. Fourier transfer infrared, 1H NMR, and thermal gravimetrical analysis were employed to investigate the structures and thermal properties of the EAs films. The introduction of EAAES into epoxy acrylate substantially improves its thermal properties and thermo‐oxidative stability at high temperatures. In addition, the acrylate containing arylene ether sulfone linkages can also improve pencil hardness and chemical and solvent resistance of the epoxy acrylate. The obtained UV‐curable epoxy acrylate containing arylene ether sulfone linkages is promising as oligomer for UV‐curable coatings, inks, and adhesives in some high‐tech regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41067.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号