首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(γ-glutamic acid) (PGA) and poly(?-lysine) (PL) solutions were used as components to prepare mixed hydrogels by γ irradiation. A PGA and PL mixed solution was crosslinked to form a hydrogel with specific water content (weight of absorbed water/weight of dry gel) of 10–100 when the 5 wt % solution of mixed polymer was exposed to γ radiation of 87 kGy dosage under N2 atmosphere. The specific water content increased with increasing PGA content of the PGA/PL mixed gel. The influence of pH and salt concentration on equilibrium swelling was studied. A characteristic pH-sensitive swelling behavior was obtained using compositional changes of PGA and PL in the gel. PGA/PL 50/50 wt % mixed gel swelling in acid (pH < 4.0) and alkaline (pH > 6.0) conditions and was deswelled between pH 4.0 and 6.0 due to the ionic composition changes of the gel network. With an increase in the ratio of PGA to PL, the hydrogels showed increasing sensitivity to salt solutions (NaCl, Na2SO4, and CaCl2). In addition, degradation of PGA/PL gel by protease produced from Aspergillus oryzae was investigated at 40°C and pH 7.0. PL gel was degraded completely within 2 days. An increase in the ratio of PAG in the PGA/PL mixed gel led to a decrease in the degree of degradation as expected. Some subtle degradation changes were found in the 50/50 and 80/20 wt % (PGA/PL) gels that were degraded by only 3.5 and 3.8% by protease, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
General information on the methods of lactone polymerization has been given. The method applied in this study for obtaining poly(?-caprolactone) with the use of sodium derivatives of ethanediol, diethylene glycol, 1,5-pentanediol, and 1,10-decanediol has been discussed, and the results of the experiments have been given. The properties of cast urethane elastomers prepared from the obtained poly(?-caprolactone) have also been presented.  相似文献   

3.
Copolymer hydrogels were prepared through the γ irradiation of aqueous solutions composed of different ratios of acrylamide (AAm) and vinyl pyrrolidone (VP) monomers. The chemical structure, thermal stability, and structural morphology of the hydrogels were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy, respectively. The IR spectroscopy analysis showed the formation of copolymerization and the presence of hydrogen bonding. The TGA study showed that the AAm/VP‐based hydrogels possessed higher thermal stability than polyacrylamide (PAAm). However, the thermal stability of the AAm/VP hydrogels increased with an increasing ratio of the VP component. The study of the swelling kinetics in water showed that all the hydrogels reached the equilibrium state after 24 h. However, the AAm/VP‐based hydrogels showed swelling in water that was lower than that of the hydrogel based on pure AAm. Meanwhile, the degree of swelling of the AAm/VP‐based hydrogels decreased with an increasing ratio of VP in the feeding solutions. The results showed that the PAAm and AAm/VP‐based hydrogels prepared at 50 kGy were affected by a change in the temperature around 25°C, whereas the hydrogels prepared at 25 kGy did not show this characteristic. However, the hydrogels prepared at different doses displayed reversible pH character. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Poly(γ-glutamic acid) (PGA) hydrogels have been prepared from microbial PGA produced by Bacillus subtilis F-02-1, water-soluble carbodiimide (WSC), and alkanediamines such as 1,3-propanediamine (1,3-PD), 1,4-butanediamine (1,4-BD), and 1,6-hexanediamine (1,6-HD) in aqueous medium. The carboxyl groups of PGA were activated by the addition of WSC in deionized water, and the PGA-WSC adduct was produced. PGA hydrogels could be produced after the mixing of PGA-WSC and alkanediamine in deionized water. This alkanediamine to which both amino groups reacted with the carboxyl groups of PGA plays the role of a crosslinking point. When the amount of PGA was 100 mg, WSC was 50 mg or more, and 1,3-PD was 25 μL or more in 2 mL of deionized water, PGA hydrogels could be produced. Specific water contents (weight of absorbed water/weight of dry gel) ranged from 300 to 1,993 g/g in the case of 1,3-PD. If the PGA-WSC adduct was freeze-dried, the yield of the PGA hydrogel became higher than that when PGA-WSC was not freeze-dried. The highest yield of the PGA hydrogel from 100 mg of PGA, 100 mg of WSC, and 100 μL of 1,3-PD in 2 mL of deionized water using the freeze-dry method was 39.9 mg of dry PGA hydrogel with a 650 g/g specific water content. The order of yield was 1,6-HD > 1,4-BD > 1,3-PD from 100 mg of PGA-100 mg of WSC in 2 mL of deionized water. The order of the specific water content was 1,3-PD (462 g/g) > 1,4-BD (234 g/g) > 1,6-HD (199 g/g). This order may be due to the higher reaction probability between the activated carboxyl groups in the PGA-WSC and both amino groups in the alkanediamine with longer methylene chains, indicating that the crosslinking density of the PGA hydrogel is higher and the specific water content is lower. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1889–1896, 1997  相似文献   

5.
The morphological development and crystallization behavior of poly(?‐caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass‐transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49°C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory–Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be ?3.95 J/cm3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Blends of poly(L-lactide) (PLLA) and poly(ε-caprolactone) (PCL) were prepared in a co-rotating twin screw miniextruder (40 rpm, 200°). It was attempted to prepare multiblock copolymers by allowing a controlled number of transesterification reactions. Various cat-alysts (n-Bu3SnOMe, Sn(Oct)2, Ti(OBu)4, Y(Oct)3, para-toluene sulphonic acid) were introduced to promote these transesterification reactions. However, PLLA degradation by ring-closing depolymerization was the dominant reaction in every case. Alternatively, after showing that L-lactide can be conveniently polymerized in the extruder, L-lactide and hy-droxyl functionalized prepolymers of PCL or poly(ethylene glycol) (PEG) were fed to the extruder in the presence of stannous octoate. Monomer conversions of over 90% and effective transformation of all hydroxyl end groups present were generally reached. Di-and triblock copolymers could be prepared in this way with characteristics very similar to polymers prepared in a batch-type process, but with considerably reduced reaction times in a fashion, which is, in principle, scaleable to a continuous process for the production of such block copolymers. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

8.
Poly(vinyl alcohol) (PVA)/water‐soluble chitosan (ws‐chitosan) hydrogels were prepared by a combination of γ‐irradiation and freeze thawing. The thermal and rheological properties of these hydrogels were compared with those of hydrogels prepared by pure irradiation and pure freeze thawing. Irradiation reduced the crystallinity of PVA, whereas freeze thawing increased it. Hydrogels made by freeze thawing followed by irradiation had higher degrees of crystallinity and higher melting temperatures than those made by irradiation followed by freeze thawing. ws‐Chitosan disrupted the ordered association of PVA molecules and decreased the thermal stability of both physical blends and hydrogels. All the hydrogels showed shear‐thinning behavior in the frequency range of 0.2–100 rad/s. Hydrogels made by freeze thawing dissolved into sol solutions at about 80°C, whereas those made by irradiation showed no temperature dependence up to 100°C. The chemical crosslinking density of the hydrogels made by irradiation followed by freeze thawing was much greater than that of hydrogels made by freeze thawing followed by irradiation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The isothermal crystallization behaviour of poly(ε-caprolactone), PCL, has been investigated by dilatometry and optical microscopy. Nucleation rates and spherulitic growth rates have been measured. At all temperatures tested a change in nucleation rate was observed early during the crystallization. Growth rates were linear over the whole of the crystallization range. The experimental results were analysed using the Avrami equation in which the experimentally observed time dependence of nucleation is used. The equation contains integer values of the Avrami exponent and describes adequately the crystallization behaviour of PCL. The difference between the apparent and true nucleation rates is emphasized, and difficulties in the calculation of rate constants are discussed.  相似文献   

10.
Poly(methyl methacrylate) (PMMA) was γ‐irradiated (5–20 kGy) by a 137Cs source at room temperature in air. The changes in the molecular structure attributed to γ‐irradiation were studied by mechanical testing (flexure and hardness), size‐exclusion chromatography, differential scanning calorimetry, thermal gravimetric analysis, and both Fourier transform infrared and solution 13C‐NMR spectroscopy. Scanning electron microscopy was used to investigate the influence of the dose of γ rays on the fracture behavior of PMMA. The experimental results confirm that the PMMA degradation process involves chain scission. It was also observed that PMMA presents a brittle fracture mechanism and modifications in the color, becoming yellowish. The mechanical property curves show a similar pattern when the γ‐radiation dose increases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 886–895, 2002  相似文献   

11.
In this article, biodegradable poly(ε‐caprolactone)/layered silicate nanocomposites were prepared and characterized. The dispersion state of modified clay in PCL matrix and its effect on thermal, rheological and mechanical properties of PCL were studied. The PCL/clay nanocomposites were then foamed using chemical foaming method. Cellular parameters such as mean cell size, cell wall thickness and cell densities of nanocomposite foams with different clay loading were collected. Effect of layered silicate on the structure and mechanical properties of PCL foams were evaluated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(lactic acid) (PLA) blended with poly(ε‐caprolactone) (PCL) was prepared with various reactive processing agents. Four isocyanates‐lysine triisocyanate (LTI); lysine diisocyanate (LDI); 1,3,5‐tris(6‐isocyanatohexyl)‐1,3,5‐triazinane‐2,4,6‐trione (Duranate TPA‐100); 1,3,5‐tris(6‐isocyanatohexyl)biuret (Duranate 24A‐100)‐and an industrial epoxide‐trimethylolpropane triglycidyl ether (Epiclon 725)‐were used as reactive processing agents. PLA/PCL blended in the presence of LTI had the highest torque in a mixer test. The test specimens were prepared by injection molding. The mechanical properties, thermal properties, molecular weight, melt viscosity, phase behavior, and morphology were investigated using tensile strength, impact strength, differential scanning calorimetry, melt mass‐flow rate measurements, capillary rheometery, gel permeation chromatography, laser scanning confocal microscopy (LSCM), and visco‐elasticity atomic force microscopy (VE‐AFM). The impact strength increased considerably at 20 wt% PCL. The nominal tensile strain of PLA/PCL blended with LTI increased by 270%. The MFR values of PLA/PCL blends decreased with increasing LTI. Similar results were observed for shear viscosity. LSCM measurements showed that the diameters of PCL were dispersed about 0.4 μm in the presence of LTI. VE‐AFM showed that spherical particles with diameters of 50 nm were PCL‐rich domain. These results indicate that isocyanate groups of LTI react with both terminal hydroxyl or carboxyl groups of polymers, and the compatibility of PLA/PCL blends improves with LTI by reactive processing. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
The influence of thermal stabilizers on the poly(ϵ-caprolactone) (PCL) diffusion in poly(vinyl chloride) (PVC)/PCL blends was studied with the addition of various concentrations of dibasic lead phthalate and dibutyltin dilaurate. The rate of PCL diffusion was followed by differential scanning calorimetry and IR spectroscopy in three series of experiments: the migration of PCL at the surface of the sample; the extraction of PCL in a fluid surrounding the sample; and the sorption of liquid PCL in the blend. In the last two series, mass losses and mass uptakes were measured as a function of time. As compared to the blend without additive, dibutyltin dilaurate induces an increase of the PCL rate of diffusion whereas dibasic lead phthalate gives a decrease. These trends are explained by: first, the formation of an associative complex between dibutyltin dilaurate and PVC, which can compete with the PVC/PCL interactions in the blend and thus favor the PCL migration; and, second, the modification of the Tg of the blend induced by the addition of a third component, which can modify the diffusion rate by changing the free volume fraction at the diffusion temperature. Tg decreases slightly in the presence of dibutyltin dilaurate but increases with dibasic lead phthalate. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Poly(N‐isopropyl acrylamide) (PNIPAAm)‐graft‐poly(ethylene oxide) (PEO) hydrogels crosslinked by poly(?‐caprolactone) diacrylate were prepared, and their microstructures were investigated. The swelling/deswelling kinetics and compression strength were measured. The relationship between the structure and properties of hydrogel are discussed. It was found that the PEO comb‐type grafted structure reduced the thermosensitivity and increased the compression strength. The addition of poly(?‐caprolactone) (PCL) accelerated the deswelling rate of the hydrogels. Meanwhile, the entanglement of PCL chains restrained the further swelling of the network of gels. The PCL crosslinking agent and PEO comb‐type grafted structure made the behavior of the hydrogels deviate from the rubber elasticity equations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Elastomeric polyurethanes with tunable biodegradation properties and suitable for numerous biomedical applications were synthesized via reaction of epoxy‐terminated polyurethanes (EUPs) with 1,6‐hexamethylenediamine as curing agent. The EUPs themselves were prepared from glycidol and isocyanate‐terminated polyurethanes made from poly(ε‐caprolactone) (PCL) or poly(ethylene glycol) (PEG) and 1,6‐hexamethylene diisocyanate. All the polymers were characterized by conventional methods, and their physical, mechanical, thermal, and degradation properties were studied. The results showed that the degradation rate and mechanical properties of the final products can be controlled by the amount of PEG or PCL present in the EUP. Increasing the PEG content causes an increase of hydrolytic degradation rate, and increasing the PCL content improves the mechanical properties of the final products. Evaluation of cytotoxcicity showed nontoxic behavior of the prepared samples, but the cytocompatibility of these polymers needs to be improved. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
Partially crystallized poly(?‐caprolactone) has been stored for up to 6 months at various temperatures from ?18 to 50 °C and the change in tensile properties, crystallinity and melting behaviour followed with storage time. The Young modulus, yield and drawing stress were observed to increase with time and at a rate which increased with storage temperature. These changes in tensile properties could be accounted for by the increase in crystallinity and were attributed to a thickening of the lamellae which reinforced the morphology and increased the stiffness of the polymer. The thickening of the lamellae accounted for the shift of the melting endotherms to higher temperatures with time. The stem lengths increased with the square root of the storage time and the rate increased with temperature corresponding to an activation energy of 40 ± 5 kJ mol?1. It is considered that ageing occurred by a process of secondary crystallization by extension of the ‘fold surface’ into the adjacent melt and the thickening of the lamellae. The time dependence of growth can only be explained by small segments of the chain being incorporated onto the crystal on the time scale of the local segmental mobility which is independent of chain entanglements. This does not have the characteristics of a nucleation controlled process but is a thermally activated diffusion process the rate of which increases with temperature. © 2015 Society of Chemical Industry  相似文献   

18.
Ethylene–propylene–diene rubbers (EPDM) with 2-ethylidene-5-norbornene (ENB), dicyclopentadiene (DCPD), and 1,4-hexadiene (HD) as third monomers have been vulcanized with peroxide and with a conventional sulfur vulcanization recipe, and their devulcanization was subsequently investigated for recycling purposes. The behavior of these vulcanizates during pure thermal devulcanization depends on the EPDM third monomer and the crosslinker used. Peroxide vulcanizates of ENB-EPDM devulcanize only to a small extent and predominantly by random scission, whereas peroxide vulcanizates of HD-EPDM devulcanize by crosslink scission. In contrast, sulfur vulcanizates of ENB-EPDM, devulcanize mainly by crosslink scission. During devulcanization of sulfur-cured HD-EPDM, scission of both crosslinks and main chains occurs. Sulfur-cured DCPD-EPDM cannot be devulcanized but shows further crosslinking instead. In those cases, where purely thermal devulcanization is already effective to a certain extent, diphenyldisulfide as devulcanization agent increases the effectivity during thermochemical devulcanization. Hexadecylamine as an alternative devulcanization agent is effective for ENB-EPDM but does not contribute to thermochemical devulcanization of HD-EPDM. In summary, devulcanization proceeds by different mechanisms in ENB-EPDM, DCPD-EPDM, and HD-EPDM. Explanations are given in terms of the chemical structures of the third monomers, the corresponding crosslinks, and devulcanization agents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The spherulitic growth rates of a series poly (?‐caprolactone) homopolymers and poly(?‐caprolactone)‐b‐ poly(ethylene glycol) (PCL‐b‐PEG) block copolymers with different molecular weights but narrow polydispersity were studied. The results show that for both PCL homopolymers and PCL‐b‐PEG block copolymers, the spherulitic growth rate first increases with molecular weight and reaches a maximum, then decreases as molecular weight increases. Crystallization temperature has greater influence on the spherulitic growth rate of polymers with higher molecular weight. Hoffman–Lauritzen theory was used to analyze spherulitic growth kinetics and the free energy of the folding surface (σe) was derived. It is found that the values of σe decrease with molecular weight at low molecular weight level and become constant for high molecular weight polymers. The chemically linked PEG block does not change the values of σe significantly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
In this work, the effect of poly(l ‐lactide) (PLLA) components on the crystallization behavior and morphology of poly(?‐caprolactone) (PCL) within PCL/PLLA blends was investigated by polarized optical microscopy, DSC, SEM and AFM. Morphological results reveal that PCL forms banded spherulites in PCL/PLLA blends because the interaction between the two polymer components facilitates twisting of the PCL lamellae. Additionally, the average band spacing of PCL spherulites monotonically decreases with increasing PLLA content. With regard to the crystallization behaviors of PCL, the crystallization ability of PCL is depressed with increase of the PLLA content. However, it is interesting to observe that the growth rate of PCL spherulites is almost independent of the PLLA content while the overall isothermal crystallization rate of PCL within PCL/PLLA blends decreases first and then increases at a given crystallization temperature, indicating that the addition of PLLA components shows a weak effect on the growth rate of the PCL but mainly on the generation of nuclei. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号