首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research has suggested that each statement in a narrative text is understood by relating it to its causal antecedents and consequences and that the text as a whole is understood by finding a causal path linking its opening to its final outcome. C. R. Fletcher and C. P. Bloom (see record 1989-10829-001) have proposed that in order to accomplish this goal, while minimizing the number of times long-term memory has to be searched, readers focus their attention on the last clause of a narrative that has causal antecedents but no consequences in the preceding text. As a result, a statement that is followed by a causal antecedent should remain the focus of attention, while the same statement followed by a consequence should not. This prediction was tested and confirmed in three experiments which show that when a target statement is followed by a sentence that includes only causal antecedents (a) continuation sentences related to it are read more quickly, (b) target words drawn from it are easier to recognize, and (c) subject-generated continuations are more likely to be causally related to it. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
G protein signaling is a widely utilized form of extracellular communication that is mediated by a family of serpentine receptors containing seven transmembrane domains. In sensory neurons, cardiac muscle and other tissues, G protein-coupled receptors are desensitized through phosphorylation by a family of kinases, the G protein-coupled receptor kinases (GRKs). Desensitization allows a cell to decrease its response to a given signal, in the continued presence of that signal. We have identified a Drosophila mutant, gprk2(6936) that disrupts expression of a putative member of the GRK family, the G protein-coupled receptor kinase 2 gene (Gprk2). This mutation affects Gprk2 gene expression in the ovaries and renders mutant females sterile. The mutant eggs contain defects in several anterior eggshell structures that are produced by specific subsets of migratory follicle cells. In addition, rare eggs that become fertilized display gross defects in embryogenesis. These observations suggest that developmental signals transduced by G protein-coupled receptors are regulated by receptor phosphorylation. Based on the known functions of G protein-coupled receptor kinases, we speculate that receptor desensitization assists cells that are migrating or undergoing shape changes to respond rapidly to changing external signals.  相似文献   

3.
Delta functions as a cell nonautonomous membrane-bound ligand that binds to Notch, a cell-autonomous receptor, during cell fate specification. Interaction between Delta and Notch leads to signal transduction and elicitation of cellular responses. During our investigations to further understand the biochemical mechanism by which Delta signaling is regulated, we have identified four Delta isoforms in Drosophila embryonic and larval extracts. We have demonstrated that at least one of the smaller isoforms, Delta S, results from proteolysis. Using antibodies to the Delta extracellular and intracellular domains in colocalization experiments, we have found that at least three Delta isoforms exist in vivo, providing the first evidence that multiple forms of Delta exist during development. Finally, we demonstrate that Delta is a transmembrane ligand that can be taken up by Notch-expressing Drosophila cultured cells. Cell culture experiments imply that full-length Delta is taken up by Notch-expressing cells. We present evidence that suggests this uptake occurs by a nonphagocytic mechanism.  相似文献   

4.
5.
Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.  相似文献   

6.
We describe a library of two-chain molecular complementation mutants of staphylococcal alpha-hemolysin that features a combinatorial cassette encoding thousands of protease recognition sites in the central pore-forming domain. The cassette is flanked by a peptide extension that inactivates the protein. We screened the library to identify alpha-hemolysins that are highly susceptible to activation by cathepsin B, a protease that is secreted by certain metastatic tumor cells. Toxins obtained by this procedure should be useful for the permeabilization of malignant cells thereby leading directly to cell death or permitting destruction of the cells with drugs that are normally membrane impermeant.  相似文献   

7.
We studied integrins involved in the adhesion of resting and activated megakaryocytes (MK) to fibronectin (FN) and fibrinogen (FGN). Guinea pig MK were isolated and in some experiments were activated by thrombin. MK adhering to FN or FGN coated on coverslips were quantitated by a computerized image analysis program. The binding of soluble human FN to MK was detected by Western blotting. Anti-integrin antibodies, disintegrins, and cyclic RGD peptides were used to identify integrins involved in the adhesion of MK to FN or FGN. Resting MK adhered to coverslips with immobilized FN. The adhesion of MK to FN was primarily inhibited by an anti-alpha5 antibody and EMF-10, a distintegrin highly specific for alpha5 beta1. However, the adhesion of MK to FN was not blocked by agents that inhibit alphaIIb beta3, alphav beta3 or alpha4 beta1. A beta1 activating antibody increased the number of MK bound to FN due to the activation of alpha5 beta1. The binding of soluble FN was also primarily inhibited by agents that block alpha5 beta1. Resting MK did not adhere to FGN. However, MK activated by thrombin did adhere to FGN. This binding was mediated by alphaIIb beta3, because binding was inhibited by bitistatin, a disintegrin, and a cyclic RGD peptide that are known to block this integrin. The binding of thrombin-activated MK to FN was mediated by both alpha5 beta1 and alphaIIb beta3 based on the additive effect of agents that inhibit these integrins. The study indicates that resting MK bind to FN but not to FGN and that alpha5 beta1 is the major integrin involved in the binding of MK to FN. Activated MK bind to FGN primarily by alphaIIb beta3. However, the binding of activated MK to FN is due to both alpha5 beta1 and alphaIIb beta3. The demonstration that alpha5 beta1 and that alphaIIb beta3 are involved in MK adhesion indicates that these integrins may have a role in MK maturation and platelet production.  相似文献   

8.
Previous studies have shown that rat adipocytes possess the capacity to take up fructose by a mechanism that is distinct from that involved in the transport of glucose. In this investigation we report that rat adipocytes express the GLUT5 fructose transporter and that it is responsible for mediating a substantial component (approximately 80%) of the total cellular fructose uptake. This proposition is based on the finding that only 21% of the total fructose uptake was cytochalasin B (CB) sensitive which most likely reflects transport via GLUT1 and/or GLUT4. Consistent with this suggestion we found (i) that insulin caused a small, but significant stimulation in fructose uptake (approximately 35%) which was abolished in the presence of CB and (ii) that 3-O-methyl glucose inhibited fructose uptake to a level comparable with that observed in the presence of CB. GLUT5 was found to be localised only in the adipocyte plasma membrane and, unlike GLUT4 or GLUT1, its cell surface abundance was not modulated by insulin. GLUT5 expression fell substantially (by approximately 75%) in adipocytes of streptozotocin-diabetic rats and was accompanied by a reduction in fructose uptake by approximately 50%. Treatment of streptozotocin-diabetic rats with sodium orthovanadate for a period of 3 days led to a significant reduction in blood glycaemia by approximately 40% and a partial restoration in both GLUT5 expression and adipocyte fructose uptake. We suggest that fructose uptake in rat adipocytes is principally mediated by GLUT5 in an insulin- and CB-insensitive manner and that expression of GLUT5 in rat adipocytes may be regulated by changes in blood glycaemia.  相似文献   

9.
This article presents a theory of selective attention that is intended to account for the identification of a visual shape in a cluttered display. The selected area of attention is assumed to be controlled by a filter that operates on the location information in a display. The location information selected by the filter in turn determines the feature information that is to be identified. Changes in location of the selected area are assumed to be governed by a gradient of processing resources. Data from three new experiments are fit more parsimoniously by a gradient model than by a moving-spotlight model. The theory is applied to experiments in the recent literature concerned with precuing locations in the visual field, and to the issue of attentional and automatic processing in the identification of words. Finally, data from neuroanatomical experiments are reviewed to suggest ways that the theory might be realized in the primate brain. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
11.
Neuronal nitric oxide synthase (nNOS) is a modular enzyme which consists of a flavin-containing reductase domain and a heme-containing oxygenase domain, linked by a stretch of amino acids which contains a calmodulin (CaM) binding site. CaM binding to nNOS facilitates the transfer of NADPH-derived electrons from the reductase domain to the oxygenase domain, resulting in the conversion of L-arginine to L-citrulline with the concomitant formation of a guanylate cyclase activating factor, putatively nitric oxide. Numerous studies have established that peroxynitrite-derived nitrogen oxides are present following nNOS turnover. Since peroxynitrite is formed by the diffusion-limited reaction between the two radical species, nitric oxide and O2.-, we employed the adrenochrome assay to examine whether nNOS was capable of producing O2.- during catalytic turnover in the presence of L-arginine. To differentiate between the role played by the reductase domain and that of the oxygenase domain in O2.- production, we compared its production by nNOS against that of a nNOS mutant (CYS-331), which was unable to transfer NADPH-derived electrons efficiently to the heme iron under special conditions, and against that of a flavoprotein module construct of nNOS. We report that O2.- production by nNOS and the CYS-331 mutant is CaM-dependent and that O2.- production can be modulated by substrates and inhibitors of nNOS. O2.- was also produced by the reductase domain of nNOS; however, it did not display the same CaM dependency. We conclude that both the reductase and oxygenase domains of nNOS produce O2.-, but that the reductase domain is both necessary and sufficient for O2.- production.  相似文献   

12.
The activation of MAPKs is controlled by the balance between MAPK kinase and MAPK phosphatase activities. The latter is mediated by a subset of phosphatases with dual specificity (VH-1 family). Here, we describe a new member of this family encoded by the puckered gene of Drosophila. Mutations in this gene lead to cytoskeletal defects that result in a failure in dorsal closure related to those associated with mutations in basket, the Drosophila JNK homolog. We show that puckered mutations result in the hyperactivation of DJNK, and that overexpression of puc mimics basket mutant phenotypes. We also show that puckered expression is itself a consequence of the activity of the JNK pathway and that during dorsal closure, JNK signaling has a dual role: to activate an effector, encoded by decapentaplegic, and an element of negative feedback regulation encoded by puckered.  相似文献   

13.
The changes in dopamine system regulation occurring during stimulant administration are examined in relation to a new model of dopamine system function. This model is based on the presence of a tonic low level of extracellular dopamine that is released by the presynaptic action of corticostriatal afferents. In contrast, spike-dependent dopamine release results in a phasic, high concentration of dopamine in the synaptic cleft that is rapidly inactivated by reuptake. Tonic dopamine has the ability to down-modulate spike-dependent phasic dopamine release via stimulation of the very sensitive dopamine autoreceptors present on dopamine terminals. Stimulants are known to elicit locomotion and stimulate reward sites by releasing dopamine from terminals in the nucleus accumbens, which is followed by a rebound depression. It is proposed that the initial activating action of stimulants is caused by increasing the release of dopamine into the synaptic cleft to activate the phasic dopamine response. However, by interfering with dopamine uptake, stimulants also allow dopamine to escape the synaptic cleft, thereby depressing subsequent spike-dependent phasic dopamine release by increasing the tonic stimulation of the autoreceptor. In contrast, repeated stimulant administration is proposed to cause long-term sensitization by pharmacological disruption of a cascade of homeostatic compensatory processes. Upon drug withdrawal, the fast compensatory systems that were blocked by stimulants rapidly restore homeostasis to the system at a new steady-state level of interaction. As a consequence, the slowly changing but potentially more destabilizing compensatory responses are prevented from returning to their baseline conditions. This results in a permanent change in the responsivity of the system. Homeostatic systems are geared to compensate for unidimensional alterations in a system, and are capable of restoring function even after massive brain lesions or the continuous presence of stimulant drugs. However, the system did not evolve to deal effectively with repetitive introduction and withdrawal of drugs that disrupt dopamine system regulation. As a consequence, repeated insults to a biological system by application and withdrawal of drugs that interfere with its homeostatic regulation may be capable of inducing non-reversible changes in its response to exogenous and endogenous stimuli.  相似文献   

14.
15.
DNA can be transferred among eubacteria and to plants and fungi by related, plasmid-mediated processes collectively referred to as bacterial conjugation. Conjugation occurs between cells in contact with one another and results in the unidirectional delivery of DNA from a bacterial donor to a recipient. Recent experiments that have reexamined the directionality of DNA flow during conjugation have come to different conclusions, some suggesting that genetic material also flows from recipient cells into the donor and that this process, termed retrotransfer, is likewise directed by donor-encoded functions. Given that bacteria are perhaps united with all living creatures by conjugation, the possibility of gene flow into donor bacteria during conjugation raises interesting evolutionary and biocontainment issues. Here we report that plasmid transmission from bacterial recipients to donors is not a donor-mediated event. Movement of genetic material from recipients to donors was inhibited by streptomycin, which does not inhibit the conjugative donor, indicating that retrotransfer requires gene expression in recipients. Furthermore, retrotransfer was reduced in matings mediated by plasmids that encode strong entry exclusion, to a similar degree as matings between two donors. Therefore we suggest that retrotransfer is in fact newly initiated conjugation between transconjugants and donors.  相似文献   

16.
A major problem with treating patients with cancer by traditional chemotherapeutic regimes is that their tumors often develop a multidrug resistant (MDR) phenotype and subsequently become insensitive to a range of different chemotoxic drugs. One cause of MDR is overexpression of the drug-effluxing protein, P-glycoprotein. It is now apparent that P-glycoprotein may also possess a more generic antiapoptotic function that protects P-glycoprotein-expressing cancer cells and normal cells from cell death. Herein we show that cells induced to express P-glycoprotein either by drug selection or by retroviral gene transduction with MDR1 cDNA are resistant to cell death induced by a wide range of death stimuli, such as FasL, tumor necrosis factor (TNF), and ultraviolet (UV) irradiation, that activate the caspase apoptotic cascade.However, P-glycoprotein-expressing cells were not resistant to caspase-independent cell death mediated by pore-forming proteins and granzyme B.MDR P-glycoprotein-expressing cells were made sensitive to caspase-dependent apoptosis by the addition of anti-P-glycoprotein antibodies or verapamil, a pharmacological inhibitor of P-glycoprotein function. Clonogenic assays showed that P-glycoprotein confers long-term resistance to caspase-dependent apoptotic stimuli but not to caspase-independent cell death stimuli. This study has confirmed a potential novel physiological function for P-glycoprotein and it now remains to dissect the molecular mechanisms involved in the inhibition of capsase-dependent cell death by P-glycoprotein.  相似文献   

17.
Two experiments examined the effects of preexposure and postexposure to a drug on the acquisition and retention of a conditioned taste aversion induced by that drug. Experiment 1 demonstrated that although drug preexposure attenuated a subsequent conditioned aversion, repeated taste-drug pairings reversed the initial attenuation effect and resulted in nearly complete avoidance of consumption. Experiment 2, however, demonstrated that drug postexposure did not alter a previously established conditioned aversion, although the postexposure experiences were effective in attenuating a conditioned aversion to a second novel solution. It was suggested that conditioned aversions are mediated by ACTH and that preexposure to a drug results in tolerance to that drug, yielding a smaller ACTH response and thereby a weaker aversion.  相似文献   

18.
Exotoxin A (ETA) inhibits protein synthesis in cells by a process that involves receptor-mediated endocytosis and the transport of a 37-kDa proteolytic fragment across a membrane into the cytoplasm. The fragment is apparently generated by the endoprotease furin after the toxin has been endocytosed. Cleavage of ETA by furin requires a low pH in vitro, and presumably also in vivo. Drugs that raise the pH of intracellular compartments are known to protect cells from ETA. The simplest hypothesis to explain this protection has been that the drugs interfere with furin cleavage. To test this idea, we measured the effect of pH-elevating drugs on the action of ETA that had been precleaved with recombinant furin before addition to cells. Surprisingly, we found that pH-elevating drugs protected cells from precleaved ETA as well as intact ETA. These results suggest that the process by which ETA intoxicates cells requires a low vacuolar pH for another event in addition to proteolysis by furin.  相似文献   

19.
Two-component signaling systems are used by bacteria, plants, and lower eukaryotes to adapt to environmental changes. The first component, a protein kinase, responds to a signal by phosphorylating the second component; a response regulator protein that often acts by inducing the expression of specific genes. Response regulators also have an autophosphatase activity that ensures that the proteins are not permanently activated by phosphorylation. The magnitude of this activity varies by at least 1000-fold between various response regulators, and the molecular features responsible for this varied autophosphatase activity have not been clearly defined. Using wild-type and mutant derivatives of the sporulation response regulator Spo0F, it has been demonstrated that a key residue in determining the magnitude of this activity is that at position 56 of Spo0F approximately P; this residue is adjacent to the site of phosphorylation, Asp 54. For example, Spo0F approximately P K56N has a 23-fold greater autophosphatase activity (t1/2 = 8 min) than wild-type Spo0F approximately P (t1/2 = 180 min). It is suggested that, by analogy to the GTPase activity of p21(ras) and by examining the crystallographic structure of Spo0F, that the carboxyamide of the mutant Asn 56 may favorably position a catalytic water near the protein acyl phosphate to promote Spo0F approximately P K56N hydrolysis. It is also deduced that Lys 56 in the wild-type protein is critical for the efficient interaction and phosphoryl transfer between Spo0F and it's cognate protein kinase, KinA. Comparison of the known response regulators shows that inefficient autophosphatases (t1/2 on the order of hours) typically contain an amino acid residue with a long side chain at the position equivalent to 56 in Spo0F, whereas efficient autophosphatases (t1/2 on the order of minutes) frequently contain a residue with a carboxyamide or carboxylate side chain at this position. It appears that, by altering residues adjacent to the active site, the autophosphatase activity of response regulator proteins has been attenuated to match the diverse biological roles played by these proteins.  相似文献   

20.
The present study proposes to show that the ethos of the Head Nursing staff is related to the practice of transformational leadership, and to additional efforts displayed by the treatment staff. Using a sampling of 57 nurses, it was established that transformational leadership presented a positive influence on additional efforts which were superior to that produced by transactional leadership. Contrary to transactional leadership, transformational leadership was shown to exert a positive effect on the ethos of the leader who in turn, had a positive influence on the extra care supplied by the nursing staff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号