首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
卷积神经网络中的激活函数的作用是激活神经元的特征然后保留并映射出来,这是神经网络能模拟人脑机制,解决非线性问题的关键。ReLU函数更是其中的佼佼者,但同时其自身也存在不足之处。文章从两个方面对ReLU函数进行了优化设计。对使用梯度下降法的激活函数的学习率进行讨论研究并提出可行的学习率改进方法。提出一种新型校正激活函数,称其为e-ln函数,经过Mnist数据集仿真实验证明某些情况下其性能要优于ReLU。  相似文献   

2.
3.
随着人工智能的兴起,利用深度学习技术实现SAR舰船检测,能够有效避免传统的复杂特征设计,并且检测精度获得了极大的改善。然而,现如今大多数检测模型往往以牺牲检测速度为代价来提高检测精度,限制了一些SAR实时性应用,如紧急军事部署、迅速海难救援、实时海洋环境监测等。为了解决这个问题,该文提出一种基于深度分离卷积神经网络(DS-CNN)的高速高精度SAR舰船检测方法SARShipNet-20,该方法取代传统卷积神经网络(T-CNN),并结合通道注意力机制(CA)和空间注意力机制(SA),能够同时实现高速和高精度的SAR舰船检测。该方法在实时性SAR应用领域具有一定的现实意义,并且其轻量级的模型有助于未来的FPGA或DSP的硬件移植。   相似文献   

4.
提出一种改进YOLOv5网络,并将其用于SAR图像目标识别。为了优化网络性能,文中进行了三个方面的改进:使用宽度比和高度比作为标注框之间的距离度量,并采用k-means聚类方法生成先验锚点框,作为预测框优化时的框尺寸初始值;改进框回归损失函数,引入Scylla交并比来代替竞争性交并比,以提高对密集分布目标的定位精度;改进置信度损失函数,使用焦点损失来替代二元交叉熵,以提高在复杂背景下的目标识别精度。基于MSAR数据集,选择了YOLOv3、常规YOLOv5作为对比网络,进行了大量的SAR图像目标识别实验。实验结果表明,相比两种对比网络,改进YOLOv5网络对各种目标均具有更高的识别准确率、召回率和F1值,以及更高的综合指标平均精度值和平均精度均值。  相似文献   

5.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。  相似文献   

6.
7.
针对传统的基于先验知识与假设条件的去雾算法在实际应用中受到太多限制的问题,本文提出了一种基于端到端卷积神经网络的去雾算法,即通过学习雾天图像与清晰图像之间的映射关系实现图像去雾。首先,该算法采用了多尺度映射,通过多尺度的卷积提取出雾霾图像的较多细节信息特征;其次,运用反卷积以减少训练网络的复杂性;最后,结合浅层与深层的合并机制将删除特征图中的伪像素,提高恢复无雾图像的质量。实验结果表明,本文提出的去雾算法在自然雾天图像和合成雾天图像上均优于其它对比算法,并且合成雾天图像在结构相似度(SSIM)和峰值信噪比(PSNR)两个重要的图像评价指标上都取得了良好的表现。  相似文献   

8.
张帆  黄赟  方子茁  郭威 《通信学报》2022,(4):114-122
针对数据敏感性场景下模型量化存在数据集不可用的问题,提出了一种不需要使用数据集的模型量化方法.首先,依据批归一化层参数及图像数据分布特性,通过误差最小化方法获得模拟输入数据;然后,通过研究数据舍入特性,提出基于损失最小化的因子动态舍入方法.通过对GhostNet等分类模型及M2Det等目标检测模型进行量化实验,验证了所...  相似文献   

9.
基于合成孔径雷达(synthetic aperture radar,SAR)在图像目标识别领域中识别精度低的问题,设计一种利用并联卷积神经网络(convolutional neural network,CNN)来提取SAR图像特征的目标识别方法.首先利用改进的ELU激活函数代替常规的ReLU激活函数,建立与二次代价函数...  相似文献   

10.
在合成孔径雷达(SAR)图像目标检测中,由于场景杂波的复杂多变,对背景杂波统计模型估计难度增加,从而导致多数检测器容易受到背景杂波的干扰。针对如何避免场景杂波对目标检测干扰的问题,提出了一种基于全卷积神经网络的SAR目标检测模型。该模型将目标检测任务转化为像素分类问题,利用卷积神经网络对数据集中目标像素特征和背景杂波像素的先验信息进行自主学习,有效减少了虚警目标的数量;通过对目标及其阴影区域的联合检测,提高了目标的检测概率。对多个不同场景图像进行测试,实验结果表明提出的检测模型具有良好的检测性能和鲁棒性能,与传统恒虚警检测算法相比,在无需考虑背景杂波统计模型前提下有效降低了虚警概率。  相似文献   

11.
图像去噪旨在减少或消除噪声对图像的影响,这一过程往往会有高频细节信息的丢失。为了在去除图像噪声的同时保护图像的边缘信息与纹理细节,本文提出了一种能够连接图像局部路径信息的神经网络,该网络训练完成后可以直接对含噪声图像进行降噪,不需要对图像进行预处理。本文提出的神经网络包括3个部分:特征提取层、信息连接模块、信息重建层。信息连接模块是该网络的关键部分,通过残差学习连接局部长路径和局部短路径的特征信息。实验结果表明,经本文处理后的图像在有参考的图像质量评价指标PSNR和SSIM上均有明显提升,PSNR最高可以达到34.87dB,SSIM可以达到0.87以上;在无参考的图像质量评价指标BRISQUE和NIQE上均有明显下降。本文算法对不同水平、不同种类的算法都有相对较好的效果,且性能优于一般算法,在去噪工作中有一定的实用价值。  相似文献   

12.
南兆营 《电声技术》2021,45(2):23-27,31
传统的法庭说话人识别方法存在对语音数据建模能力差、特征提取难以及容易受噪声干扰影响等问题,为了改进这些问题,提出一种基于卷积神经网络的法庭说话人识别方法.该方法以AlexNet网络为基础进行参数调整,为了弥补ReLU函数作为激活函数时易出现神经元坏死和偏移的现象,融合Tanh和ReLU函数的特性,构造一种新的TR函数作为网络的激活函数.同时,为了避免人工提取语音特征的主观性和不全面性,在实验中将语音转换成声纹图作为网络输入.实验结果表明,激活函数为TR函数时,该方法在法庭说话人识别数据集的准确率达到了92.24%,在花朵图像公开数库的准确率达到了96.13%,效果均好于Tanh和ReLU函数.  相似文献   

13.
近年来,以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法在图像识别领域取得了巨大进展,但尚未在SAR目标识别领域得到广泛应用。基于此,将具有代表性的LeNet,AlexNet,VGGNet,GoogLeNet,ResNet,DenseNet,SENet等卷积神经网络模型应用到SAR图像目标识别上,并依据识别精度、模型尺寸、运行时间等指标在公开SAR数据集MSTAR上对9类目标进行识别实验。详细对比分析了不同CNN模型的综合性能,验证了利用CNN网络模型进行SAR图像目标识别的优越性,同时也为该领域的后续工作提供了参考基准。  相似文献   

14.
为实现在只有少量标记数据情况下的高质量的图像分类,本文提出了一种基于深度卷积神经网络的图上半监督极化SAR图像分类算法.该算法将极化SAR图像建模为无向图,并基于该无向图,定义了包含半监督项,卷积神经网络项和类标光滑项的能量函数.算法所采用的卷积神经网络提取抽象的数据驱动的极化特征.半监督项约束了有标记像素的类标在分类过程中保持不变.类标光滑项约束了像素间类标的光滑性.基于对PauliRGB图像进行超像素分割而产生的初始化类标图,交替迭代优化所定义的能量函数直至其收敛.在两幅真实极化SAR图像上的实验结果表明,该算法达到了优异的分类效果,其性能优于当前已有算法.  相似文献   

15.
《无线电工程》2019,(6):453-457
针对通信信号调制方式识别问题,提出了一种基于卷积神经网络的通信信号调制方式识别新方法,利用深度卷积网络实现了通信信号特征的自学习,避免了传统算法中特征提取与选择问题,并设计了基于自学习特征的分类器,实现了通信信号调制方式的识别。仿真结果表明,利用卷积神经网络实现通信信号调制方式的识别是可行、有效的。  相似文献   

16.
针对物体框标注样本包含大量异质成分的问题,该文提出了一种基于复值卷积神经网络(CV-CNN)样本精选的极化SAR(PolSAR)图像弱监督分类方法。该方法首先采用CV-CNN对物体框标注样本进行迭代精选,并同时训练出可直接用于分类的CV-CNN。然后利用所训练的CV-CNN完成极化SAR图像的分类。基于3幅实测极化SAR图像的实验结果表明,该文方法能够有效剔除异质样本,与采用原始物体框标注样本的传统全监督分类方法相比可以获得明显更优的分类结果,并且该方法采用CV-CNN比采用经典的支持矢量机(SVM)或Wishart分类器性能更优。   相似文献   

17.
杜兰  刘彬  王燕  刘宏伟  代慧 《电子与信息学报》2016,38(12):3018-3025
该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过四步训练法得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。  相似文献   

18.
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法.该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的"亮线"特征进行检测.与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势.最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性.  相似文献   

19.
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。  相似文献   

20.
基于3D卷积神经网络的PolSAR图像精细分类   总被引:2,自引:3,他引:2       下载免费PDF全文
张腊梅  陈泽茜  邹斌 《红外与激光工程》2018,47(7):703001-0703001(8)
PolSAR (Polarimetric Synthetic Aperture Radar)图像分类的传统方法在前期需要对数据进行特征提取,涉及较多的人为参与,且分类精度有待进一步提高。此外,在采用监督分类方法时,某些地物存在小样本问题,针对这些问题并结合PolSAR图像精细分类的需求,提出基于3D卷积神经网络的PolSAR图像地物精细分类方法,将传统卷积神经网络扩展为三维并将其应用于PolSAR图像分类中,利用PolSAR数据多通道特性,充分挖掘数据中的信息,提高分类性能,并采用虚拟样本扩充的方法改善某些地物的小样本情况,获得更好的分类结果。实验结果表明:3D卷积神经网络较2D卷积神经网络在PolSAR图像地物精细分类中有较好的性能,且虚拟样本扩充方法能够有效改善小样本分类问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号