首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
探讨水解酶(α-淀粉酶、蛋白酶和糖化酶)的添加量和水解时间对椰蓉膳食纤维提取率的影响作用大小的基础上优化酶法提取椰蓉膳食纤维的工艺参数,进一步分类制备可溶性膳食纤维(Soluble Dietary Fiber,SDF)和不溶性膳食纤维(Insoluble Dietary Fiber,IDF),并研究其理化性质。结果表明,椰蓉膳食纤维的最佳酶法提取工艺为A_3B_2C_2D_2E_1F_2,即α-淀粉酶用量0.3%,酶解时间45 min,蛋白酶用量0.2%,酶解时间为45 min,糖化酶用量20μL/g,酶解时间为30 min,该条件下椰蓉膳食纤维的提取率高达为89.68%。制备所得的椰蓉IDF的溶胀性、持油力和持水力最高,分别达15.33 mL/g、6.51 g/g和12.71 g/g,可以作为一种潜在的功能性膳食纤维添加组分应用到食品工业中。  相似文献   

2.
以生姜渣为原料,对酶-化学法提取其中膳食纤维的工艺进行探究。考察α-淀粉酶添加量与NaOH用量、水解时间、水解温度对生姜渣中可溶性和不可溶性膳食纤维得率的影响,以可溶性膳食纤维得率为标准,通过单因素、正交试验优化出提取的最优工艺为:α-淀粉酶用量0.3%,NaOH用量2.0%,水解时间50 min,水解温度70℃,在此工艺条件下,生姜渣中可溶性膳食纤维得率28.58%、不溶性膳食纤维得率66.21%。  相似文献   

3.
以马铃薯全粉加工副产物为原料,采用超声波辅助酶、碱结合的方法提取马铃薯膳食纤维,利用单因素试验和响应面试验对提取条件进行优化,确定最佳提取工艺为超声波功率180 W、超声温度50℃、α-淀粉酶添加量2%、酶解时间35 min、NaOH浓度3%、碱解时间14 min时,膳食纤维提取率为66.56%。采用理化分析方法,对提取物进行品质特性的测定,结果表明:总膳食纤维的持水力为9.02 g/g,持油力为1.3 g/g,膨胀力为3.5 mL/g、阳离子交换能力为0.72 mmol/kg、葡萄糖吸附能力为137.2 mg/g,胆固醇吸附能力在pH 2和pH 7时分别为9.54、16.82 mg/g,亚硝酸根离子吸附能力为7.31 mg/g。  相似文献   

4.
以茶树菇(Agrocybe aegerita)为原料,采用超声辅助酶的方法提取膳食纤维(DF)。在单因素试验的基础上,选取料液比、α-淀粉酶用量、蛋白酶用量、超声功率4个因素为响应变量,以茶树菇膳食纤维得率为响应值,利用Box-Behnken试验设计建立数学模型进行响应面分析。结果表明,超声辅助酶提取的膳食纤维最佳工艺条件为料液比1∶29(g∶mL),α-淀粉酶用量1.5%,蛋白酶用量1.2%,超声功率150 W。在此优化条件下,膳食纤维得率为37.70%,与预测值接近,比相同的条件下超声波水提取膳食纤维得率的结果高出5.4%。并对其理化性质指标进行测定,测得其持水力为5.4 g/g,膨胀力为2.7 mL/g,持油力为3.7 g/g。  相似文献   

5.
目的:优选薏仁米糠制备膳食纤维工艺,并对其品质进行研究。方法:以薏仁米糠为原料,考察料液比、淀粉酶添加量和碱性蛋白酶添加量对薏仁米糠膳食纤维提取率的影响,并对最优制备条件下所得的膳食纤维进行化学组成和物化特性分析。结果:薏仁米糠膳食纤维最佳工艺条件为料液比(m薏仁米糠∶V)1∶10 (g/mL),淀粉酶添加量100 U/g,碱性蛋白酶添加量100 U/g,此时薏仁米糠膳食纤维提取率为84.39%。薏仁米糠膳食纤维中的不溶性膳食纤维含量明显提高,达64.49%;可溶性膳食纤维含量为0%,水分、脂肪、淀粉和蛋白质含量明显降低;膨胀力、持水力和持油力随温度的增高相应增大,分别为3.12 mL/g、4.02 g/g、4.29 g/g。结论:该方法可作为提取薏仁米糠膳食纤维的可靠方法,具有较大的实用价值。  相似文献   

6.
采用生物酶法从麦麸中提取膳食纤维,通过水洗去除麦麸中的部分淀粉和蛋白质,在pH5.5、55℃条件下利用内源植酸酶去除麦麸中的植酸,水解同时加入中温α-淀粉酶与蛋白酶(Alcalase2.4L)来去除麦麸中淀粉与蛋白质。通过响应面优化麦麸膳食纤维制备工艺,得出最佳制备工艺条件为:pH7.0,蛋白酶添加量1.8%(4.32 AU/100 g麦麸),中温α-淀粉酶添加量1.72%(3 440 U/100 g麦麸),反应温度68℃,反应时间2.5 h。  相似文献   

7.
胡萝卜渣膳食纤维提取工艺及其性能特性研究   总被引:2,自引:0,他引:2  
通过水提醇沉法提取胡萝卜渣水溶性膳食纤维(CRSDF),通过外加淀粉酶和蛋白酶提取胡萝卜渣水不溶性膳食纤维(CRIDF),采用均匀设计优选提取工艺条件;通过测定CRIDF的膨胀性、持水力、结合水力、阳离子交换容量、结合脂肪能力及吸附胆酸钠能力来了解其性能特性.CRSDF提取的最佳工艺参数为时间60 min,液料比40:1(mL/g),pH值1.5,温度80%;提取率为70%.最佳酶解条件,淀粉酶为加酶量0.60%,时间60 min,pH值7.0,温度75℃;中性蛋白酶为加酶量0.30%,时间60 min,pH值7.0,温度70℃.利用胡萝卜渣提取膳食纤维得率较高,理化性能较好,有良好的发展前景.  相似文献   

8.
以马铃薯干渣为原料,采用α-淀粉酶和蛋白酶提取膳食纤维后,用纤维素酶对其进行改性,研究酶添加量、p H、酶解温度和酶解时间对马铃薯渣可溶性膳食纤维得率的影响。在此基础上用正交实验优化酶反应的工艺条件。结果表明:酶添加量25 U/g,p H5,酶解温度45℃,酶解2.5 h为最佳反应条件。在此条件下可溶性膳食纤维得率为28.78%,而未用纤维素酶处理的得率为16.18%。通过AOAC 993.19酶-重量法测定马铃薯干渣中可溶性膳食纤维含量由7.01%提高至13.13%。  相似文献   

9.
响应面法优化脱脂米糠膳食纤维提取工艺的研究   总被引:2,自引:0,他引:2  
为优化脱脂米糠膳食纤维提取工艺,在单因素试验基础上,选择NaOH浓度、NaOH浸泡时间、碱性蛋白酶添加量和高温淀粉酶添加量为自变量,膳食纤维纯度为响应值,利用Box-Benhnken中心组合试验和响应面分析法,研究各自变量交互作用及其对膳食纤维纯度的影响.模拟得到二次多项式回归方程的预测模型,并确定脱脂米糠膳食纤维提取工艺为:NaOH浓度0.2mol/L,NaOH浸泡时间60 min,碱性蛋白酶添加量250 U/g,高温淀粉酶添加量200 U/g,在此条件下膳食纤维的纯度达到75.79%,得率为38.5%.  相似文献   

10.
以小麦麸皮为原料,采取双酶提取法制备小麦麸皮膳食纤维,通过正交实验得出最佳提取条件为:α-淀粉酶添加量为0.6%,α-淀粉酶酶解pH为6,α-淀粉酶酶解温度为70℃,碱性蛋白酶添加量为0.3%,碱性蛋白酶酶解pH为9,碱性蛋白酶酶解温度为55℃,此时小麦麸皮膳食纤维提取率为71.94%。  相似文献   

11.
甘薯渣膳食纤维制备工艺的研究   总被引:7,自引:2,他引:7  
采用正交法优选了甘薯渣中膳食纤维的制备工艺条件并进行了脱色试验,测定了脱色前后膳食纤维主要性能指标的变化。结果表明:薯渣中膳食纤维提取的最优条件为α-淀粉酶的添加量1.0%,水解液的pH 6.5,酶解温度65℃,时间90min;脱色后,总膳食纤维的含量由76.45%下降至76.12%.但持水率与膨胀性均有较大幅度提高,过80目筛的膳食纤维其持水率与膨胀性由625%、6.90mL/g增加至789%、12.90mL/g。  相似文献   

12.
为实现绿芦笋加工下脚料的增值利用,采用超声辅助酶法,从芦笋下脚料中提取可溶性膳食纤维,在单因素基础上结合响应面法,优化提取工艺并对提取的可溶性膳食纤维进行抗氧化活性研究。结果表明,超声辅助酶法提取绿芦笋下脚料可溶性膳食纤维的最佳工艺参数为:超声时间18 min,蛋白酶添加量0.6 mL,淀粉酶添加量0.7m L。在此条件下,芦笋下脚料可溶性膳食纤维的得率为8.20%。抗氧化试验结果表明,绿芦笋加工下脚料可溶性膳食纤维具有一定抗氧化性能,与VC相比仍有不如,可能与不同抗氧化机制有关。  相似文献   

13.
鲜食糯玉米酶法制汁工艺优化   总被引:1,自引:0,他引:1  
以“江南花糯”鲜食玉米为原料,在单因素试验基础上,确定中温α-淀粉酶添加量、中性蛋白酶添加量和中性蛋白酶酶解时间3个因素的取值范围,并应用Box-Behnken设计原理和响应曲面分析法对鲜食糯玉米汁酶解工艺条件进行优化。结果表明:中温α-淀粉酶添加量、中性蛋白酶添加量和中性蛋白酶酶解时间均对糯玉米浆液悬浮稳定性有显著影响(P<0.05);在中温α-淀粉酶添加量7.5U/g、中性蛋白酶添加量83U/g、中性蛋白酶酶解时间43min最佳作用条件下,鲜食糯玉米汁悬浮稳定性得到最大程度的改善与提高(OD660=1.832),回归模型的相对误差小于0.5%,与实测值拟合较好。  相似文献   

14.
以蓝莓加工过程中产生的副产品果渣为原料,膳食纤维的提取率为指标,通过单因素试验和正交试验,研究了双酶法制备膳食纤维的最佳工艺。试验结果表明,当α-淀粉酶添加量为0.3%,α-淀粉酶酶解温度为75℃,碱性蛋白酶添加量为0.3%,碱性蛋白酶酶解温度为45℃时,膳食纤维的提取率达到50.98%。  相似文献   

15.
以浒苔为原料,对浒苔膳食纤维提取和漂白工艺条件进行探讨;通过正交试验设计确定酶法提取膳食纤维和漂白的最佳条件。酶法提取膳食纤维的最佳条件,蛋白酶处理的温度为25℃、pH5、用酶量1%、时间为60min;α-淀粉酶处理的温度为30℃、pH6、用酶量0.1%、时间为20min;最佳漂白条件,漂白液浓度0.80%、pH6、漂白时间10min。在此条件下,提取率为40.22%、膨胀力为45.13mL/g、持水力为2171%。产品可作为高品质膳食纤维及理想的食品添加剂。  相似文献   

16.
采用四级薇菜干磨成粉为原料,研究酶法提取薇菜中不溶性膳食纤维的工艺优化,为合理利用薇菜资源提供参考依据。采用α-淀粉酶酶解薇菜干粉末,以薇菜不溶性膳食纤维提取率为评价指标,进行单因素试验及正交试验,得出薇菜不溶性膳食纤维的最佳工艺条件。结果表明,酶法提取薇菜不溶性膳食纤维的最佳提取条件为料液比1︰20 g/m L、柠檬酸缓冲溶液p H 5.8、α-淀粉酶浓度1.0%、酶解温度30℃、酶解时间4.5 h,在最优条件下薇菜不溶性膳食纤维提取率为74.28%。其持水力在8,12和24 h时分别为3.47,3.87和4.32 g/g;结合水力在2,4和6 h时分别为0.70,0.80和0.84 g。通过单因素正交试验,确定了影响酶法提取薇菜不溶性膳食纤维的主要因素,得出了提取薇菜不溶性膳食纤维的最佳工艺条件,最佳工艺条件下制备的薇菜不溶性膳食纤维的持水力和结合水力性能较好,并且可以为科研上的研究提供基础条件,以及为以后的工业生产提供理论基础。  相似文献   

17.
本实验以黑糯玉米芯为实验对象,分别采用α-淀粉酶、糖化酶、中性蛋白酶对原料进行前处理,以纤维素酶制备玉米芯可溶性膳食纤维。通过正交实验优化了黑糯玉米芯中可溶性膳食纤维的提取工艺条件,同时测定了玉米芯可溶性膳食纤维中的还原糖、总酚、花色素含量、热稳定性、红外结构和超微结构等理化性质,并对其抗氧化活性进行了研究。结果表明:当料液比在1:25 g/mL,纤维素酶加酶量为2.5%,酶解温度在45 ℃,酶解时间为70 min时,可溶性膳食纤维提取得率最高,为4.36%。与华玉15号玉米芯相比,黑糯玉米芯可溶性膳食纤维的酚含量和还原糖含量更高;热稳定性较弱;结构具有更大的表面积,具有更强的生物活性。除总还原能力稍弱外,黑糯玉米芯可溶性膳食纤维对DPPH自由基的清除能力、羟自由基清除能力均高于华玉15号玉米芯,显示了良好的抗氧化活性。  相似文献   

18.
以新鲜绿芦笋为原料,采用超声-酶法协同提取芦笋中可溶性膳食纤维,探讨纤维素酶添加量、超声时间、pH值和超声功率对可溶性膳食纤维得率的影响。以可溶性膳食纤维得率为响应值,通过Box-Behnken试验设计进行超声-酶法协同提取芦笋中可溶性膳食纤维的工艺优化。结果表明:影响芦笋可溶性膳食纤维含量的主次因素依次为酶添加量pH值超声时间超声功率。最佳提取工艺为纤维素酶添加量0.065%、超声时间114 min,pH 5.50,超声功率180 W。在此条件下,提取芦笋可溶性膳食纤维含量得率最高,验证试验得到的得率为8.807 mg/g。  相似文献   

19.
以香椿老叶为试材,研究超声波协同酶法提取香椿老叶可溶性膳食纤维的影响因素,通过响应面优化试验确定最佳提取工艺参数。结果表明:影响香椿老叶可溶性膳食纤维提取率的因素主次顺序为超声时间>纤维素酶添加量>pH值>超声温度;最佳提取条件为纤维素酶添加量0.50%、超声温度60.0 ℃、超声时间53.0 min、pH 6.0;此条件下可溶性膳食纤维的提取率可达7.11%,产品杂质含量低,持水力和膨胀力分别为7.29 g/g和4.40 mL/g。  相似文献   

20.
酶解法提取甘薯渣中水溶性膳食纤维的研究   总被引:1,自引:0,他引:1  
研究了脂肪酶、淀粉酶和木瓜蛋白酶的加入对酶法提取甘薯渣中水溶性膳食纤维的影响,并采用正交试验对提取工艺进行优化,得出酶法提取的最佳工艺条件:脂肪酶添加量为0.03g,淀粉酶添加量为1.20g,木瓜蛋白酶添加量为0.50g,水溶性膳食纤维的最佳提取率为7.30%。提取得到的甘薯渣中水溶性膳食纤维纯度高达85.48%,持水力为775%,溶胀力为3.93mL/g,感官性状好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号