首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
针对锂电池模型不准确和状态突变导致SOC估计精度不佳的问题,提出了引入时变渐消因子的强跟踪卡尔曼滤波算法.以HPPC试验方法辨识了锂电池的等效二阶RC模型,对比分析了现有的扩展卡尔曼滤波原理及提出的强跟踪卡尔曼滤波算法.通过结合强跟踪原理和卡尔曼滤波算法并引入时变渐消因子,提出的方法能够强制估计残差保持正交特性,并保证残差满足高斯白噪声特性.仿真验证表明,与扩展卡尔曼滤波原理相比,在模型不准确和状态突变的情况下,强跟踪卡尔曼滤波算法具有更高的估计精度,估计误差低于2.5%,提高了近45%.  相似文献   

2.
为了提高SOC估计精度,提出基于遗忘因子改进多新息扩展卡尔曼滤波(FMIEKF)方法. 建立锂离子电池的双极化等效电路模型,开展开路电压测试. 通过递归最小二乘法,实现电池模型参数在线辨识. 提出FMIEKF进行SOC估计,该方法在融合多新息辨识理论和卡尔曼滤波基础上,引入遗忘因子削弱历史数据修正权重,解决数据过饱和问题. 通过实验和硬件在环进行验证. 结果表明,FMIEKF具有较高的准确性和收敛性,最大估计误差为0.948%,平均误差为0.214%,在不同SOC初值下20 s内收敛,可以适用于实际的电池管理系统中.  相似文献   

3.
选用二阶RC回路的电池模型,以单体的磷酸铁锂动力电池为研究对象,通过充电/放电电流脉冲实验获得电池模型中的各个参数变化范围,研究其荷电状态(SOC)的估算方法.根据电池模型的状态方程和输出方程,运用MATLAB软件,利用无迹卡尔曼滤波(UKF)方法来估算锂离子电池的SOC,并将其估算结果与扩展卡尔曼滤波(EKF)方法的估算结果进行比较.实验结果表明UKF方法能够更精确地估计出动力电池的SOC.  相似文献   

4.
提出一种分阶段自适应锂离子电池荷电状态(state of charge,SOC)估计方法.选取含有常相位元件(constant phase element,CPE)的分数阶模型,以更好地描述电池的充放电动态过程,并采用改进型遗传算法(genetic algorithm,GA)对分数阶模型进行参数辨识,从而增强参数辨识的...  相似文献   

5.
基于V-R模型与卡尔曼滤波器的蓄电池SOC估计   总被引:1,自引:0,他引:1  
蓄电池组广泛应用于UPS系统中,荷电状态(SOC)是表征蓄电池状态的重要参数之一.在线准确估算蓄电池SOC,有利于开展对蓄电池的状态诊断、维护,保证电池组安全供电.通过对阀控铅酸电池作了大量的充放电试验,根据试验数据应用最小二乘法进行辨识,获得蓄电池SOC的端电压-电阻的计算模型,运用卡尔曼滤波器算法,对SOC做最优估计.经实验验证和仿真,得到了蓄电池SOC最优估计结果,具有很好的精确度,表明该方法能够在工程上用来估算蓄电池的SOC.  相似文献   

6.
为提高滚动轴承故障诊断率,提出一种基于三域特征提取和鲸鱼算法优化极限学习机(WOA-ELM)的滚动轴承故障诊断方法。首先,分别对滚动轴承的振动信号进行时域分析、频谱分析和小波包分解,构成故障特征向量集;其次,为避免维度过高影响后续模型诊断效率,应用流形学习中的局部保留投影对特征向量集进行降维并剔除冗余特征,获得对故障信息更具针对性的特征向量集;为解决极限学习机易陷入局部最优的问题,引入鲸鱼算法对极限学习机网络参数进行迭代寻优,提高ELM网络性能;最后,建立鲸鱼算法优化极限学习机的滚动轴承诊断模型,对故障进行分类和诊断。采用美国凯斯西储大学轴承数据对WOA-ELM进行训练和测试,实验结果表明,该方法能有效提高滚动轴承故障诊断率。  相似文献   

7.
8.
在多数农村乡镇,传统小型农田主要依靠人工进行施肥灌溉、采摘果实等作业;而大中型农田虽然已经进行整改使用现代化机械,但大多还需驾驶员操作该机械完成,整体效率及操作安全性还有待提高.针对以上问题,提出了一种基于机器人自主导航UKF(Unscented Kalman Filter)位置估计算法的果实识别及定位方法.机器人携带视觉、光学、惯性等各类传感器采集果实图像信息,通过导航解算得到其位置信息,并用图像处理算法提取成熟果实特征,为农业机器人自主采摘提供更精确的技术指导.实验表明,1 000 s内采集到的所有果实x、y方向上,基于UKF算法的位置估计误差均值在[0,0.05]m范围内,对果实判断最精确;基于单个果实特征位置(0,0)cm的小范围定位采摘仿真实验表明,UKF算法的误差定位范围在两次量测中分别为[-1,2]cm与[-9,1]cm,无论是横方向还是纵方向定位靠近特征,其精度均比EKF算法提高了50%左右.  相似文献   

9.
为了解决回转支承振动信号微弱,特征信息不易提取的问题,提出基于Wavelet leader方法和经混合灰狼算法优化的等距映射算法(HGWO-ISOMAP)的多分形自适应特征提取方法. 利用Wavelet leader计算多分形特征,挖掘振动数据的几何结构信息,构造高维特征矩阵;通过HGWO优化后的ISOMAP算法对高维特征矩阵进行自适应特征筛选;将筛选后的特征矩阵输入到经遗传算法(GA)优化的最小二乘支持向量机(LSSVM)中进行故障状态识别. 为了验证所提方法的优越性,采用课题组自主研发的回转支承综合性能试验台对某型号回转支承进行全寿命实验. 结果表明,相比一般时域、时频域、频域特征提取方法,所提方法能提高识别精度,缩短计算时间,为回转支承特征提取提供新的有效途径.  相似文献   

10.

针对二维L型阵列参数估计过程中,由于低信噪比(signal-to-noise ratio,SNR)及小快拍数的不理想条件,使得传播算子算法(propagation method,PM)角度估计不准确,提出一种基于阵列扩展的改进PM算法的二维波达方向(direction of arrival,DOA)估计算法.该方法利用阵列的平移不变特性,对协方差矩阵进行扩展重排,并由此扩展协方差矩阵估计得到传播算子,将传播算子分块得到和阵列流型的新关系,进一步提高了估计性能,然后通过快速配对法实现俯仰角和方位角的配对,进而实现角度的精确估计.与现有的算法相比,该方法更适用于低SNR及小快拍数的情况,而且角度估计准确,无须谱搜索,工程应用价值更高.仿真结果显示了本文算法有较好的二维DOA估计性能.

  相似文献   

11.
针对铝箔封口温度场分布特征进行了研究,提出了一种基于Gabor变换和极限学习机(ELM)的封口密封性检测方法。对采集到的不同特征类型热像图进行Gabor变换,提取纹理特征训练极限学习机神经网络。然后利用训练结果对热像图进行分类识别,通过热像图分类特征判断铝箔封口密封情况。与提取颜色特征的BP神经网络对比分析发现,基于Gabor变换和极限学习机的算法具有泛化性强、响应速度快、精度高等优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号