首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为提高奶白花芸豆中抗性淀粉含量,保留其他营养成分,对压热法制备高抗性淀粉奶白花芸豆的工艺进行了研究,并评价了处理前后奶白花芸豆的基本营养成分、体外模拟消化的变化及其结构特征。结果表明,压热法制备高抗性淀粉奶白花芸豆的最佳工艺条件为:压热温度124℃,料液比1:1.9 (g:g),老化时间73 h,压热时间24 min,在此优化条件下抗性淀粉含量为35.63%;结构特性分析结果表明:淀粉原有颗粒形貌显著改变,分子晶型发生转变,但无新的基团产生。压热处理前后奶白花芸豆中粗脂肪、粗蛋白无显著性变化,淀粉及抗性淀粉含量显著(P<0.05)增加;处理后体外消化速率明显降低;压热处理提高奶白花芸豆中抗性淀粉含量的方法为其工业化生产及在食品中的应用提供了参考。  相似文献   

2.
通过比较抗性淀粉含量和体外消化性能试验筛选板栗RS3型抗性淀粉最佳制备方法,并采用正交试验进行优化,确定板栗RS3型抗性淀粉的最佳制备工艺。结果表明,压热-酶解法制备的抗性淀粉含量显著高于压热法和微波法(P<0.05),且体外消化率最低,故选择压热-酶解法为最佳制备方法。单因素试验证明:淀粉乳浓度,酶解时间,酶用量以及压热温度是影响压热-酶解工艺的主要因素。正交试验确定板栗RS3型抗性淀粉最佳制备工艺条件为:淀粉乳浓度20%、酶解时间6h、酶用量25 npun/g淀粉、压热温度100℃,在此条件下抗性淀粉含量为10.01%。综上压热-酶解法是制备板栗RS3型抗性淀粉的最佳方法,具有一定的应用前景。  相似文献   

3.
压热法制备淮山药抗性淀粉及其消化性   总被引:1,自引:0,他引:1  
研究压热法制备淮山药抗性淀粉的影响因素与抗性淀粉得率的关系,采用三因素二次通用旋转组合设计,优化淮山药抗性淀粉的制备工艺,试验结果表明:淀粉乳含量、pH值、压热时间对抗性淀粉得率的影响极显著,影响因素主次顺序依次为淀粉乳含量、淀粉乳pH值和压热时间;最佳工艺条件为淀粉乳含量25.20%,pH6.26,压热时间42.85 min,在此条件下测得的淮山药抗性淀粉得率为25.27%。In-Vitro体外模拟人体消化的试验表明,淮山药抗性淀粉较淮山药原淀粉更难消化,且抗性淀粉含量越大越难以消化。  相似文献   

4.
探究不同品种芸豆淀粉、抗性淀粉的结构特征和理化性质。以不同品种芸豆为原料,分别采用碱法和压热酶解法制备芸豆淀粉及其抗性淀粉,利用扫描电镜、傅里叶红外光谱仪、RVA黏度仪等研究不同品种芸豆淀粉和抗性淀粉的分子结构及物化特性。结果表明:与原淀粉相比,抗性淀粉颗粒形貌及晶型结构改变;芸豆淀粉及抗性淀粉官能团和化学键组成相同。红芸豆淀粉糊化温度最低、最终黏度和回生值较高;与淀粉相比,各抗性淀粉糊化温度显著升高,糊黏度降低,芸豆淀粉及抗性淀粉的溶解度和膨胀度均与温度呈正相关,芸豆抗性淀粉的冻融稳定性降低。结论:不同品种芸豆淀粉分子结构特征相同,物化特性不同;压热酶解改变抗性淀粉颗粒形貌及晶型结构;不同品种芸豆抗性淀粉物化特性不同。  相似文献   

5.
以青稞淀粉为原料,探讨压热冷却循环法制备青稞抗性淀粉的过程中淀粉溶液质量分数、冷藏时间、循环次数对抗性淀粉含量的影响,利用单因素和正交实验优化工艺。结果表明,最佳工艺条件为:青稞淀粉溶液质量分数10%、冷藏24 h、4次压热冷却循环,所得抗性淀粉含量最高,为(8.57±0.10)%。对最佳工艺条件下所制备的青稞抗性淀粉的理化性质进行表征,结果表明,经过压热冷却循环处理后,快消化淀粉(RDS)和慢消化淀粉(SDS)含量均减少,抗性淀粉含量增加至(8.57±0.10)%。颗粒形态由扁球状变成形状不规则的块状且表面形成大量沟壑,晶型由A型变为V型,峰值黏度和最终黏度显著降低。  相似文献   

6.
章丽琳  叶陵  张喻 《中国酿造》2015,34(12):105
为了提高抗性淀粉的得率,并获得抗性淀粉制备方法的最佳工艺参数,该试验以马铃薯淀粉为原料,抗性淀粉得率为评价指标,采用纤维素酶-压热法制备马铃薯抗性淀粉。研究淀粉乳浓度、酶添加量、酶解时间、压热温度、压热时间5个因素对马铃薯抗性淀粉得率的影响,在单因素试验的基础上,通过正交试验优化得出马铃薯抗性淀粉的最佳制备工艺条件,即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解时间50 min、压热温度125 ℃、压热时间30 min、老化温度4 ℃、老化时间18 h,在此条件下抗性淀粉的得率为30.33%。  相似文献   

7.
酶法制备菠萝蜜籽抗性淀粉的工艺优化及特性研究   总被引:2,自引:0,他引:2  
采用压热后普鲁兰酶脱支法制备菠萝蜜籽抗性淀粉。利用单因素和L9(34)正交试验对工艺参数进行优化,得出最佳制备工艺条件为淀粉乳浓度15%,加酶量15 ASPU/g,酶处理时间24 h,老化时间24 h时抗性淀粉的含量最高。抗性淀粉含量为25.82%。菠萝蜜籽淀粉处理量后变成有大量微孔通道的片状,晶型由A型变成B+V型,糊化温度范围变宽,糊化焓值降低。  相似文献   

8.
压热法制备绿豆抗性淀粉工艺的优化   总被引:2,自引:0,他引:2  
研究了压热法制备绿豆抗性淀粉(MRS)的工艺参数。采用单因素实验比较了不同淀粉乳浓度、压热温度、压热时间、贮藏温度、贮藏时间对MRS得率的影响。在此基础上采用Box-Behnken的中心组合实验设计,优化MRS制备参数,建立了各因子与MRS得率关系的数学回归模型,确定了最佳的制备条件,即淀粉乳浓度为27.31%,贮藏温度为4.77℃,压热时间40 min时,MRS的产率为12.63%,与预测的理论值12.41%极为接近,与抗性淀粉含量为4.04%的绿豆原淀粉相比,MRS含量增加8.59%。  相似文献   

9.
以酶解-压热法制备紫山药抗消化淀粉,考察了淀粉乳浓度、普鲁兰酶用量、酶解时间、压热时间对制备淀粉中抗消化淀粉含量的影响,通过正交试验和方差分析明确影响因素的重要性并优化工艺条件;比较分析了糊化淀粉、压热淀粉以及酶解-压热法制备淀粉的水解动力学。结果表明:酶解-压热法制备紫山药抗消化淀粉的含量随各因素水平的增加呈先增加后减小的趋势,优化的条件为:淀粉乳质量分数20%、普鲁兰酶用量8 U/g、酶解12 h、以120℃压热处理40 min 2次时,制备抗消化淀粉样品纯度为96.67%,其中抗消化淀粉含量为47.85%;水解特性研究表明:与糊化、压热法相比,酶解-压热法制备抗消化淀粉的水解率、水解指数与血糖指数均显著降低,具有更好的抗消化性。  相似文献   

10.
压热处理对抗性淀粉形成的影响   总被引:27,自引:4,他引:23  
以普通玉米淀粉为试验材料,分析对压热温度、压热时间和水分含量进行了研究,采用改进的Berry法定量测定抗性淀粉,分别得到了三条相应的曲线,试验结果证明这三个因素对抗性淀粉的产率有显著的影响,并且发现用压热反应器制备抗性淀粉的合适条件是:70%水份、150℃维持60min,在这个条件下,可以得到较市制 抗性淀粉含量。  相似文献   

11.
为了提高板栗抗性淀粉含量,并获得抗性淀粉制备方法的最适工艺参数,本研究优化了压热—普鲁兰酶法制备板栗抗性淀粉的工艺,在单因素试验基础上,采用响应面法研究淀粉悬浮液质量分数、普鲁兰酶添加量、酶解时间和冷凝时间对抗性淀粉得率的影响,建立各因素与抗性淀粉得率关系的数学回归模型。最终根据实际工艺操作确定最佳的制备工艺条件为淀粉悬浮液质量分数11.00%,酶添加量9 PUN/g、酶解时间10 h、冷凝时间15 h。在该制备条件下,测得抗性淀粉得率为64.90%,基本符合理论预测值(65.70%)。试验证明,响应面法能够提高板栗抗性淀粉的制备率。  相似文献   

12.
为探究压热辅助酶解法制备马蹄抗性淀粉的最优工艺及特性,以马蹄淀粉为原料,设计淀粉乳浓度、酶添加量、酶处理时间3个单因素,并以制备后样品中的抗性淀粉得率为响应值对工艺条件进行优化,同时对样品进行扫描电镜(Scanning electron microscope,SEM)观察并测定直链淀粉和支链淀粉含量等理化特性。结果表明,淀粉乳浓度25.56%、酶添加量15.87 ASPU/g(干基)、酶处理时间35.75 h为最优的制备工艺,在此工艺下得到的抗性淀粉得率最高为16.32%,与预测值16.1093%相近,证明响应面模型与实际情况拟合良好。理化特性研究发现:抗性淀粉中的直链淀粉含量为31.78%,显著高于原淀粉,是原淀粉的242.9%;碘吸收特性曲线发现,原淀粉的最大吸收峰在600~650 nm之间,抗性淀粉的最大吸收峰在550~600 nm之间,抗性淀粉的λmax相对原淀粉出现了左移,表明抗性淀粉中直链淀粉与支链淀粉比例发生了改变;红外光谱分析发现,抗性淀粉的R1047/1022值和R1022/995值均高于原淀粉,表明抗性淀粉具有更高的结晶度。研究结果可为压热辅助酶解制备马蹄抗性淀粉的...  相似文献   

13.
利用压热法结合响应面分析法,优化甘薯抗性淀粉的制备工艺。以甘薯全粉为原料,研究全粉乳质量分数、pH、压热温度、压热时间、冷藏时间对甘薯抗性淀粉得率的影响。结果表明,响应面分析法得到甘薯抗性淀粉的最佳制备工艺条件为:全粉乳质量分数25.50%、pH7.30、压热温度120 ℃、压热时间31.20 min、冷藏时间24 h。在此条件下,甘薯抗性淀粉的得率为9.41%,与理论值较为接近,响应面模型与实际情况拟合良好,为获得甘薯抗性淀粉的工业化生产提供了参考。  相似文献   

14.
探究超声-微波协同酶法制备芸豆抗性淀粉的最佳工艺条件及其物理结构特性。以紫花芸豆为试验材料,利用超声-微波协同酶法制备RS3型抗性淀粉,考察不同水平时淀粉悬浮液质量分数、超声时间、普鲁兰酶添加量和微波功率对抗性淀粉得率的影响,同时做响应面优化试验;通过扫描电镜、红外光谱、凝胶渗透色谱仪等方法分析芸豆淀粉及抗性淀粉的结构特性。结果表明:淀粉悬浮液质量分数16%、普鲁兰酶添加量12.5 ASPU/g(干基)、微波功率300 W、超声-微波协同处理20 min时,芸豆抗性淀粉得率最高为(24.37±0.41)%。与原淀粉相比,芸豆抗性淀粉颗粒破损,呈形状大小各异的块状碎石结构;抗性淀粉未出现新的特征吸收峰;处理后的芸豆抗性淀粉平均聚合度降低,多分散系数降低。超声-微波协同酶解法可提高芸豆抗性淀粉得率,抗性淀粉形成过程中淀粉官能团没有变化,其余结构特性改变。  相似文献   

15.
以安顺山药为原料,通过单因素试验(one-factor-at-a-time method,OFAT)及响应面分析法(response surface methodology,RSM)优化压热法制备抗性淀粉(resistant starch,RS)的工艺,并对抗性淀粉的结构进行X-射线衍射仪(X-Ray Diffraction,XRD)、傅立叶红外光谱仪(Fourier Transform Infrared Spectrometer,FT-IR)和扫描电镜(Scanning Electron Microscope,SEM)等表征分析。结果显示:通过工艺条件优化,在淀粉乳百分含量为14%,p H值为6.0,压热温度为112℃,压热时间为1.5 h时,抗性淀粉得率为24.83%,与响应面预测值高度相符,结果合理可靠。  相似文献   

16.
蕨根抗性淀粉的制备工艺研究   总被引:2,自引:0,他引:2  
压热法制备蕨根抗性淀粉的过程中,淀粉乳质量分数、压热温度、pH、压热时间和老化时间对蕨根抗性淀粉质量分数有不同程度的影响.通过三因素二次正交旋转组合设计,得出淀粉乳质量分数、pH、压热时间对蕨根抗性淀粉质量分数的影响大小次序为:淀粉乳质量分数>pH>压热时间.压热法制备蕨根抗性淀粉的最佳工艺条件为:淀粉乳质量分数28.7%,pH7.8,121℃压热处理38 min,4℃老化24 h,得到的蕨根抗性淀粉质量分数为10.94%.  相似文献   

17.
以大米粉为原料,考查了压热法、湿热法、韧化法处理大米粉对其抗性淀粉含量、基本成分、RVA黏度、透明度、溶解度和膨胀能力的影响。结果表明:压热、湿热、韧化处理均能提高大米粉中抗性淀粉含量。其中压热处理大米粉的抗性淀粉含量最高,可达12.70%。米粉乳浓度、处理温度、处理时间对不同水热处理有不同程度的影响。水热处理前后脂质含量的显著降低说明:在水热处理过程中,脂质参与形成了具有淀粉酶抗性的复合物。压热和湿热大米粉的RVA、透明度变化与大米粉、韧化大米粉差异较大,表明这2种水热处理后淀粉发生老化;压热后大米粉溶解度、膨胀度明显高于湿热、韧化处理,分析压热处理可能对大米粉结构造成影响。  相似文献   

18.
郑琳  张元元  齐明 《现代食品科技》2011,27(6):647-650,657
研究压热法制备白扁豆抗性淀粉的工艺参数.以白扁豆淀粉为原料,采用压热法制备RS3型抗性淀粉,并通过单因素试验和正交试验,以抗性淀粉的产率作为评价指标确定抗性淀粉制备的最佳工艺参数.实验结果表明抗性淀粉制备的最佳工艺参数为淀粉糊浓度15%,pH为8,温度为125℃,时间为1.5 h,老化处理时间为36h,在此工艺条件下制...  相似文献   

19.
以橡子原淀粉为原料,采用压热法制备橡子抗性淀粉,通过单因素试验,研究淀粉乳浓度、压热温度、压热时间和压热次数对抗性淀粉得率的影响。响应面分析法得到橡子抗性淀粉制备的最佳工艺条件为:淀粉乳浓度30%,压热时间29 min,压热温度122℃,压热次数4次,抗性淀粉得率为13.30%。并利用扫描电子显微镜观察淀粉颗粒形态,结果显示压热处理后的橡子抗性淀粉原颗粒结构形态遭到破坏,形成新的不规则晶体结构。  相似文献   

20.
为提高参薯淀粉转化为抗性淀粉的产率,对参薯淀粉的压热法制备抗性淀粉进行了研究。以参薯淀粉为原料,通过单因素试验分析各种因素对抗性淀粉产率的影响;经过三因素二次正交旋转组合设计结合响应面分析,得出淀粉乳浓度、pH、压热时间对抗性淀粉含量的影响大小次序:淀粉乳浓度>pH>压热时间;最佳工艺条件为淀粉乳质量浓度33.00%,pH 7.6,121℃压热处理36 min,4℃下老化处理24 h,80℃烘干18 h,得到的抗性淀粉质量分数为13.92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号