首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high‐resolution turbulence information. This paper explores the use of two multi‐lidar scanning strategies, the tri‐Doppler technique and the virtual tower technique, for measuring 3‐D turbulence. In summer 2013, a vertically profiling Leosphere WindCube lidar and three Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi‐lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri‐Doppler analysis was completed to calculate the three‐dimensional wind vector every second. Next, all three scanning lidars were used to build a ‘virtual tower’ above the WindCube lidar. Results indicate that the tri‐Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions and can measure high‐resolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Coherent Doppler lidar measurements are of increasing interest for the wind energy industry. Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three‐dimensional scanning Doppler lidar may provide a new basis for wind farm site selection, design and optimization. In this paper, the authors discuss Doppler lidar measurements obtained for a wind energy development. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically terrain effects, spatial variation of winds, power density and the effect of shear at different layers within the rotor swept area. Vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain‐following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. Doppler lidar data are used to estimate the spatial power density at hub height (for the period of the deployment). An example wind farm layout is presented for demonstration purposes based purely on lidar measurement, even though the lidar data acquisition period cannot be considered climatological. The strength of this approach is the ability to directly measure spatial variations of the wind field over the wind farm. Also, because Doppler lidar can measure winds at different vertical levels, an approach for estimating wind power density over the rotor swept area (rather than only the hub height) is explored. Finally, advanced vector retrieval algorithms have been applied to better characterize local wind variations and shear. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We define and demonstrate a procedure for carrying out wind turbine load validation based on measurements from nacelle‐mounted scanning lidars. Two coherent Doppler lidar systems, a pulsed lidar and a continuous‐wave lidar, are mounted on a 2.3‐MW wind turbine equipped with load measurement sensors. Wind measurements from a meteorological mast mounted at 2.5 rotor diameters distance are used as reference. The study shows how lidar measurements are processed and applied as inputs to aeroelastic load simulations, and the results are then compared with simulations where the wind inputs have been determined using the meteorological mast data in compliance with the IEC61400‐13 standard. For the majority of simulation cases considered, the use of nacelle‐mounted lidar measurements results in load estimation uncertainties lower or equal to those that are based on measurements from cup anemometers on the mast. These results demonstrate the usefulness of nacelle‐mounted lidars as tools for carrying out load validation without the need of meteorological masts.  相似文献   

4.
Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle‐mounted pulsed lidars with two lines of sight (LOS) have already been demonstrated to be suitable for use in power performance measurements. To be considered as a professional tool, however, power curve measurements performed using these instruments require traceable calibrated measurements and the quantification of the wind speed measurement uncertainty. Here we present and demonstrate a procedure fulfilling these needs. A nacelle lidar went through a comprehensive calibration procedure. This calibration took place in two stages. First with the lidar on the ground, the tilt and roll readings of the inclinometers in the nacelle lidar were calibrated. Then the lidar was installed on a 9m high platform in order to calibrate the wind speed measurement. The lidar's radial wind speed measurement along each LOS was compared with the wind speed measured by a calibrated cup anemometer, projected along the LOS direction. The various sources of uncertainty in the lidar wind speed measurement have been thoroughly determined: uncertainty of the reference anemometer, the horizontal and vertical positioning of the beam, the lack of homogeneity of the flow within the probe volume, lidar measurement mean deviation and standard uncertainty. The resulting uncertainty lies between 1 and 2% for the wind speed range between cut‐in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast‐top mounted cup anemometer placed two rotor diameters upwind of the turbine. The wind speed uncertainty related to the lidar tilting was calculated based on the tilt angle uncertainty derived from the inclinometer calibration and the deviation of the measurement height from hub height. The resulting combined uncertainty in the power curve using the nacelle lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The atmospheric flow phenomenon known as the Low Level Jet (LLJ) is an important source of wind power production in the Great Plains. However, due to the lack of measurements with the precision and vertical resolution needed, particularly at rotor heights, it is not well‐characterized or understood in offshore regions being considered for wind‐farm development. The present paper describes the properties of LLJs and wind shear through the rotor layer of a hypothetical wind turbine, as measured from a ship‐borne Doppler lidar in the Gulf of Maine in July–August 2004. LLJs, frequently observed below 600 m, were mostly during nighttime and transitional periods, but they were also were seen during some daytime hours. The presence of a LLJ significantly modified wind profiles producing vertical wind speed shear. When the wind shear was strong, the estimates of wind power based upon wind speeds measured at hub‐height could have significant errors. Additionally, the inference of hub‐height winds from near‐surface measurements may introduce further error in the wind power estimate. The lidar dataset was used to investigate the uncertainty of the simplified power‐law relation that is often employed in engineering approaches for the extrapolation of surface winds to higher elevations. The results show diurnal and spatial variations of the shear exponent empirically found from surface and hub‐height measurements. Finally, the discrepancies between wind power estimates using lidar‐measured hub‐height winds and rotor equivalent winds are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
An observational case study of a wind ramp event at Enel Green Power North America's wind plant in Oklahoma is presented. Using coordinated measurements collected by the Texas Tech University Ka‐band radars, dual‐Doppler‐synthesized wind fields are merged with data from a meteorological tower and 32 operational turbines to document the evolution and impact of the wind ramp on turbine behavior and performance over a 1 h period. During the event, average power output for turbines within the dual‐Doppler analysis domain increases from 18.3% of capacity to 98.9% of capacity, emphasizing the abrupt impact wind ramp events can have on the electrical grid. The presented measurements and analyses highlight the insights remote sensing technologies can offer towards documenting transient wind ramps and assisting modeling efforts used to forecast such events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We demonstrate a method for incorporating wind velocity measurements from multiple‐point scanning lidars into three‐dimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly generated Gaussian turbulence fields in compliance with the Mann model for neutral stability. The expected efficiency of various scanning patterns is estimated by means of the explained variance associated with the constrained field. A numerical study is made using the hawc2 aeroelastic software, whereby the constrained turbulence wind time series serves as input to load simulations on a 10 MW wind turbine model using scanning patterns simulating different lidar technologies—pulsed lidar with one or multiple beams—and continuous‐wave lidars scanning in three different revolving patterns. Based on the results of this study, we assess the influence of the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads. The main conclusion is that introducing lidar measurements as turbulence constraints in load simulations may bring significant reduction in load and energy production uncertainty, not accounting for any additional uncertainty from real measurements. The constrained turbulence method is most efficient for prediction of energy production and loads governed by the turbulence intensity and the thrust force, while for other load components such as tower base side‐to‐side moment, the achieved reduction in uncertainty is minimal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A novel validation methodology allows verifying a CFD model over the entire wind turbine induction zone using measurements from three synchronized lidars. The validation procedure relies on spatially discretizing the probability density function of the measured free‐stream wind speed. The resulting distributions are reproduced numerically by weighting steady‐state Reynolds averaged Navier‐Stokes simulations accordingly. The only input varying between these computations is the velocity at the inlet boundary. The rotor is modelled using an actuator disc. So as to compare lidar and simulations, the spatial and temporal uncertainty of the measurements is quantified and propagated through the data processing. For all velocity components the maximal difference between measurements and model are below 4.5% relative to the average wind speed for most of the validation space. This applies to both mean and standard deviation. One rotor radius upstream the difference reaches maximally 1.3% for the axial component. © 2017 The Authors. Wind Energy Published by John Wiley & Sons, Ltd.  相似文献   

9.
A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor diameter, 59 m hub height 2.3 MW wind turbine (Vestas NM80), located at Tjæreborg Enge in western Denmark is presented. Preview wind data at two selected upwind measurement distances, acquired during two measurement periods of different wind speed and atmospheric stability conditions, are analyzed. The lidar‐measured speed, shear and direction of the wind field previewed in front of the turbine are compared with reference measurements from an adjacent met mast and also with the speed and direction measurements on top of the nacelle behind the rotor plane used by the wind turbine itself. Yaw alignment of the wind turbine based on the spinner lidar measurements is compared with wind direction measurements from both the nearby reference met mast and the turbine's own yaw alignment wind vane. Furthermore, the ability to detect vertical wind shear and vertical direction veer in the inflow, through the analysis of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed‐forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Chenghai Wang  Shuanglong Jin 《风能》2014,17(9):1315-1325
The WRF model is applied to simulate the low‐level wind field for a wind farm located in a typical arid region in northwest China for February 2008. The selected region has complex terrain with sparse vegetation. Overall, the WRF model reproduced the variation features of wind speeds and wind directions. However, the model overestimated the observed low‐level wind speeds, and there were large discrepancies for the low wind velocity (i.e. the errors of simulated winds increase with height and will be larger when the observed wind speeds are lower than 2.5 m/s). The features of the simulated errors and the possible causes in the model were analysed. The simulated low‐level wind in the afternoon is more accurate than that in early morning, which is usually unstable. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind‐turbine wakes for different hub‐height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmospheric boundary layer and turbine parameters were monitored through a met‐tower and SCADA, respectively. The wake measurements are clustered and their ensemble statistics retrieved as functions of the hub‐height wind speed and the atmospheric stability regime, which is characterized either with the Bulk Richardson number or wind turbulence intensity at hub height. The cluster analysis of the LiDAR measurements has singled out that the turbine thrust coefficient is the main parameter driving the variability of the velocity deficit in the near wake. In contrast, atmospheric stability has negligible influence on the near‐wake velocity field, while it affects noticeably the far‐wake evolution and recovery. A secondary effect on wake‐recovery rate is observed as a function of the rotor thrust coefficient. For higher thrust coefficients, the enhanced wake‐generated turbulence fosters wake recovery. A semi‐empirical model is formulated to predict the maximum wake velocity deficit as a function of the downstream distance using the rotor thrust coefficient and the incoming turbulence intensity at hub height as input. The cluster analysis of the LiDAR measurements and the ensemble statistics calculated through the Barnes scheme have enabled to generate a valuable dataset for development and assessment of wind farm models.  相似文献   

12.
The first known dual‐Doppler (DD) measurements collected within a utility‐scale wind farm are presented. Various complex flow features are discussed, including detailed analyses of turbine wakes, turbine‐to‐turbine interaction, high wind speed channels that exist between individual wakes and intermittent gust propagation. The data have been collected using innovative mobile Doppler radar technologies, which allows for a large observational footprint of ~17 km2 in the presented analyses while maintaining spatial resolution of 0.49° in the azimuthal dimension by 15 m in the along‐beam range dimension. The presented DD syntheses provide three‐dimensional fields of the horizontal wind speed and direction with a revisit time of approximately 1 min. DD wind fields are validated with operational turbine data and are successfully used to accurately project composite power output for several turbines. The employed radar technologies, deployment schemes, scanning strategies and subsequent analysis methodologies offer the potential to contribute to the validation and improvement of current wake modeling efforts that influence wind farm design and layout practices, enhanced resource assessment campaigns, and provide real‐time wind maps to drive ‘smart’ wind farm operation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Rotor‐layer wind resource and turbine available power uncertainties prior to wind farm construction may contribute to significant increases in project risk and costs. Such uncertainties exist in part due to limited offshore wind measurements between 40 and 250 m and the lack of empirical methods to describe wind profiles that deviate from a priori, expected power law conditions. In this article, we introduce a novel wind profile classification algorithm that accounts for nonstandard, unexpected profiles that deviate from near power law conditions. Using this algorithm, offshore Doppler wind lidar measurements in the Mid‐Atlantic Bight are classified based on goodness‐of‐fit to several mathematical expressions and relative speed criteria. Results elucidate the limitations of using power law extrapolation methods to approximate average wind profile shape/shear conditions, as only approximately 18% of profiles fit well with this expression, while most consist of unexpected wind shear. Further, results demonstrate a relationship between classified profile variability and coastal meteorological features, including stability and offshore fetch. Power law profiles persist during unstable conditions and relatively weaker northeasterly flow from water (large fetch), whereas unexpected classified profiles are prevalent during stable conditions and stronger southwesterly flow from land (small fetch). Finally, the magnitude of the discrepancy between hub‐height wind speed and rotor equivalent wind speed available power estimates varies by classified wind‐profile type. During unexpected classified profiles, both a significant overprediction and underprediction of hub‐height wind available power is possible, illustrating the importance of accounting for site‐specific rotor‐layer wind shear when predicting available power.  相似文献   

14.
A coupledwind‐wave modeling system is used to simulate 23 years of storms and estimate offshore extreme wind statistics. In this system, the atmospheric Weather Research and Forecasting (WRF) model and Spectral Wave model for Near shore (SWAN) are coupled, through a wave boundary layer model (WBLM) that is implemented in SWAN. The WBLM calculates momentum and turbulence kinetic energy budgets, using them to transfer wave‐induced stress to the atmospheric modeling. While such coupling has a trivial impact on the wind modeling for 10‐m wind speeds less than 20 ms?1, the effect becomes appreciable for stronger winds—both compared with uncoupled WRF modeling and with standard parameterization schemes for roughness length. The coupled modeling output is shown to be satisfactory compared with measurements, in terms of the distribution of surface‐drag coefficient with wind speed. The coupling is also shown to be important for estimation of extreme winds offshore, where the WBLM‐coupled results match observations better than results from noncoupled modeling, as supported by measurements from a number of stations.  相似文献   

15.
The accuracy of boundary‐layer wind profiles occurring during nocturnal low‐level jet (LLJ) events, and their sensitivities to variations of user‐specifiable model configuration parameters within the Weather Research and Forecasting model, was investigated. Simulations were compared against data from a wind‐profiling lidar, deployed to the Northern Great Plains during the U.S. Department of Energy‐supported Weather Forecast Improvement Project. Two periods during the autumn of 2011 featuring LLJs of similar magnitudes and durations occurring during several consecutive nights were selected for analysis. Simulated wind speed and direction at 80 and 180 m above the surface, the former a typical wind turbine hub height, bulk vertical gradients between 40 and 120 m, a typical rotor span, and the maximum wind speeds occurring at 80 and 180 m, and their times of occurrence, were compared with the observations. Sensitivities of these parameters to the horizontal and vertical grid spacing, planetary boundary layer and land surface model physics options, and atmospheric forcing dataset, were assessed using ensembles encompassing changes of each of these configuration parameters. Each simulation captured the diurnal cycle of wind speed and stratification, producing LLJs during each overnight period; however, large discrepancies in relation to the observations were frequently observed, with each ensemble producing a wide range of distributions, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error and bias values computed over the LLJ cycle (late evening through the following morning) revealed that, while some configurations performed better or worse in different aspects and at different times, none exhibited definitively superior performance. The considerable root mean square error and bias values, even among the ‘best’ performing simulations, underscore the need for improved simulation capabilities for the prediction of near‐surface winds during LLJ conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Engineers and researchers working on the development of airborne wind energy systems (AWES) still rely on oversimplified wind speed approximations and coarsely sampled reanalysis data because of a lack of high‐resolution wind data at altitudes above 200 m. Ten‐minute average wind speed LiDAR measurements up to an altitude of 1100 m and data from nearby weather stations were investigated with regard to wind energy generation and impact on LiDAR measurements. Data were gathered by a long‐range pulsed Doppler LiDAR device installed on flat terrain. Because of the low overall carrier‐to‐noise ratio, a custom‐filtering technique was applied. Our analyses show that diurnal variation and atmospheric stability significantly affect wind conditions aloft which cause a wide range of wind speeds and a multimodal probability distribution that cannot be represented by a simple Weibull distribution fit. A better representation of the actual wind conditions can be achieved by fitting Weibull distributions separately to stable and unstable conditions. Splitting and clustering the data by simulated surface heat flux reveals substate stratification responsible for the multimodality. We classify different wind conditions based on these substates, which result in different wind energy potential. We assess optimal traction power and optimal operating altitudes statistically as well as for specific days based on a simplified AWES model. Using measured wind speed standard deviation, we estimate average turbulence intensity and show its variation with altitude and time. Selected short‐term data sets illustrate temporal changes in wind conditions and atmospheric stratification with a high temporal and vertical resolution.  相似文献   

17.
This work compares continuous seismic ground motion recordings over several months on top of the foundation and in the near field of a wind turbine (WT) at Pfinztal, Germany, with numerical tower vibration simulations and simultaneous optical measurements. We are able to distinguish between the excitation of eigenfrequencies of the tower‐nacelle system and the influence of the blade rotation on seismic data by analyzing different wind and turbine conditions. We can allocate most of the major spectral peaks to either different bending modes of the tower, flapwise, and edgewise bending modes of the blades or multiples of the blade‐passing frequency after comparing seismic recordings with tower simulation models. These simulations of dynamic properties of the tower are based on linear modal analysis performed with finite beam elements. To validate our interpretations of the comparison of seismic recordings and simulations, we use optical measurements of a laser Doppler vibrometer at the tower of the turbine at a height of about 20 m. The calculated power spectrum of the tower vibrations confirms our interpretation of the seismic peaks regarding the tower bending modes. This work gives a new understanding of the source mechanisms of WT‐induced ground motions and their influence on seismic data by using an interdisciplinary approach. Thus, our results may be used for structural health purposes as well as the development of structural damping methods, which can also reduce ground motion emissions from WTs. Furthermore, it demonstrates how numerical simulations of wind turbines can be validated by using seismic recordings and laser Doppler vibrometry.  相似文献   

18.
Jian Fan  Qian Li  Yanping Zhang 《风能》2019,22(3):407-419
In this paper, the pattern of wind turbine tower collapse as a result of the coupled effects of wind and an intense, near‐field earthquake is investigated. The constitutive relation of the tower cylinder steel is simulated via a nonlinear kinematic hardening model, and the specific value of each parameter in the constitutive model is provided. A precise model of the tower structure coupled with the blade is created using a nonlinear, finite element method. This method is compared with the results from a static pushover test of a small cylindrical tower to validate the finite element modeling method in this research. Two earthquake wave sets are selected as inputs. One contains 20 near‐field velocity pulse‐like ground motion waves with various pulse periods; the other contains 20 ordinary far‐field ground motion waves. A wind turbine tower with a hub height of 60 m is selected as an example for analysis. The dynamic response of this tower as a result of the coupled effects of the two ground motion wave sets and a transient wind load is calculated using nonlinear time‐history analysis. The calculation results shows that the average horizontal displacement of the tower top as a result of the near‐field velocity pulse‐like ground motion is 33% larger than the case with far‐field ground motion. Finally, the seismic collapse vulnerability curve of this wind turbine tower is calculated. The seismic collapse capacity of the tower is evaluated, and the seismic collapse pattern of the tower is analyzed.  相似文献   

19.
Remote sensing instruments that scan have the ability to provide high‐resolution spatial measurements of atmospheric boundary layer winds across a region. However, the ability to use these spatially distributed measurements to extract temporal variations in the flow at time scales less than the measurement revisit period is historically limited. As part of this work, the framework for an enhanced space‐to‐time conversion technique is established, allowing for time histories of atmospheric boundary layer wind characteristics to be reliably extracted for locations within the measurement domain. This space‐to‐time conversion technique is made possible by quantifying momentum advection within the measurement domain, rather than simply assuming a uniform advection based on a singular mean wind speed and direction. The use of this technique enables the extraction of long lead‐time (ie, upwards of 60 seconds) forecasts of wind speed and direction at individual locations within the measurement domain, thereby expanding the application and potential benefits of scanning instruments. For example, these long lead‐time forecasts can be used to enhance proactive wind turbine control and more accurately define wind turbine wake statistics.  相似文献   

20.
This work provides a signal‐processing and statistical‐error analysis methodology to assess key performance indicators for a floating Doppler wind lidar. The study introduces the raw‐to‐clean data processing chain, error assessment indicators and key performance indicators, as well as two filtering methods at post‐processing level to alleviate the impact of angular motion and spatial variability of the wind flow on the performance indicators. Towards this aim, the study mainly revisits horizontal wind speed (HWS) and turbulence intensity measurements with a floating ZephIR 300 lidar buoy during a 38 day nearshore test campaign in Pont del Petroli (Barcelona). Typical day cases along with overall statistics for the whole campaign are discussed to illustrate the methodology and processing tools developed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号