首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of field tests using linear individual pitch control (LIPC) on the two‐bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two‐bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency [e.g., the once‐per‐revolution (1P) frequency], which made it only applicable in above‐rated wind turbine operating conditions. In this study, LIPC is extended to below‐rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. The field‐test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below‐rated and above‐rated operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, an innovative concept for load reduction on the two‐bladed Skywind 3.4 MW prototype is presented. The load reduction system consists of a flexible coupling between the hub mount, carrying the drive train components including the hub assembly, and a nacelle carrier supported by the yaw bearing. This paper intends to assess the impact of introducing a flexible hub connection on the system dynamics and the aero‐elastic response to aerodynamic load imbalances. In order to limit the rotational joint motion, a cardanic spring‐damper element is introduced between the hub mount and the nacelle carrier flange, which affects the system response and the loads. A parameter variation of the stiffness and damping of the connecting spring‐damper element has been performed in the multi‐body simulation solver Simpack. A deterministic, vertically sheared wind field is applied to induce a periodic aerodynamic imbalance on the rotor. The aero‐structural load reduction mechanisms of the coupled system are thereby identified. It is shown that the fatigue loads on the blades and the turbine support structure are reduced significantly. For a very low structural coupling, however, the corresponding rotational deflections of the hub mount exceed the design limit of operation. The analysis of the interaction between the hub mount motion and the blade aerodynamics in a transient inflow environment indicates a reduction of the angle of attack amplitudes and the corresponding fluctuations of the blade loading. Hence, it can be concluded that load reduction is achieved by a combination of reduced structural coupling and a mitigation of aerodynamic load imbalances. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
C. E. D. Riboldi  S. Cacciola 《风能》2017,20(12):1955-1969
Two‐bladed wind turbines have regained the attention of the community thanks to the advantages in manufacturing cost provided by the lower number of blades and the ease of implementation of effective passive systems for load reduction (ie, teetering pin). Considering both teetering and nonteetering architectures, the dynamics of 2‐bladed turbines is different from that of 3‐bladed machines especially in terms of how multiples of the rotor frequencies in blade signals are translated on the fixed system. Such characteristics have hampered the adoption of active control laws for load mitigation based on individual pitch control, extensively studied for 3‐bladed turbines. A basic element for control development allowing to capture the essence of the relationship between signals on the blades and the fixed system on 2‐bladed turbines–represented by the Coleman transformation for 3‐bladed turbines–has not been identified yet. The present paper tries to fill the gap, presenting an extended transformation–called multiblade multilag–applicable to turbines with an arbitrary number of blades, providing a systematic way to link rotor signals to fixed system signals, thus allowing the application of control algorithms for individual pitch control developed for 3‐bladed turbines to the 2‐bladed case. The paper addresses the problem first at a theoretical level, and subsequently providing applicative results from simulations on virtual models of teetering and nonteetering 2‐bladed turbines. The proposed transformation algorithm and control laws allow to effectively reduce some relevant loads and motions respectively in the nonteetering and teetering scenarios, through a cyclic pitch input.  相似文献   

4.
The excessive use of individual pitch control (IPC) for fatigue load reduction is accompanied by the uncertainty of potential bearing failures. This problem, which is due to the small swivel angles associated with IPC, arises because of the rolling and sliding contacts that occur with the rolling element bearings that are typically used. The use of a flexure bearing is proposed as a way of bypassing this issue. The flexure bearing enables a certain range of motion to be exclusively provided by elastic deformation. This article presents a novel bearing concept that is based on the hypothesis that such a flexure bearing can handle the unfavorable load conditions associated with IPC better than a rolling element bearing. Methods for the dimensioning of the aforementioned flexure bearing are therefore presented. The loads, particularly the required elastic rotation angle of the flexure bearing, are determined first. A promising design for the flexure bearing itself is then chosen and adapted to meet the specific requirements of IPC. These methods are applied to develop an initial conceptual design of the novel bearing unit for a 3‐bladed wind turbine of about 3.6 MW. The result demonstrates the feasibility of the concept, and a final discussion presents further opportunities of the design that will make this concept satisfy the special requirements of IPC.  相似文献   

5.
The load reduction potential in regular operation and the design drivers of a flexible hub connection on two‐bladed turbines are presented in this paper. Developed for the two‐bladed Skywind 3.4 MW wind turbine, the flexible hub connection integrates an additional, multidirectional elasticity between the hub mount and the nacelle carrier to reduce the load transfer into the support structure. The stiffness and damping properties of the interface connection determine the load amplitudes of the system and influence the overall turbine dynamics. Consequently, the design relevant operating scenarios change due to a potential dynamic instability, resonance, or violation of deflection margins in comparison with a nonflexible hub connection. The system's capability to reduce fatigue and ultimate loads is assessed in several turbulent inflow conditions and transient operating states, while taking into account the operating limits of displacements. A permutation of the dynamic coupling parameters is conducted to characterize the sensitivity of load characteristics to the design variables. By identifying the critical operating conditions, it is possible to provide design guidelines for an effective optimization strategy.  相似文献   

6.
This paper presents a wind turbine concept with an innovative design combining partial pitch with a two‐bladed (PP‐2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare the loads and dynamics of the PP‐2B turbine, a partial pitch three‐bladed (PP‐3B) turbine and a normal pitch regulated three‐bladed (3B) turbine are introduced on the basis of solidity similarity scaling. From the dynamic comparisons between two‐ and three‐bladed turbines, it has been observed that the blade vibrations are transferred differently from the rotor to the tower. For a three‐bladed turbine, blade vibrations seen in a fixed frame of reference are split with ±1P only. A two‐bladed turbine has a similar split of ±1P but also includes contributions on higher harmonics (±2P, ±3P, … etc.). Further on, frequency split is also seen for the tower vibrations, where an additional ±2P contribution has been observed for the two‐bladed turbine. Regarding load comparisons, the PP‐2B turbine produces larger tower load variations because of 2P excitation during the operational cases. However, extreme loads are reduced by approximately 20% for the PP‐2B and 18% for the PP‐3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP‐2B turbine, when the wind direction is from ±90° to the turbine, but this also requires that the turbine is parked in a T‐configuration. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

7.
Active load reduction strategies such as individual pitch control (IPC) and trailing edge flap (TEF) actuation present ways of reducing the fatigue loads on the blades of wind turbines. This may enable development of lighter blades, improving the performance, cost effectiveness and viability of future multi‐megawatt turbine designs. Previous investigations into the use of IPC and TEFs have been limited to turbines with ratings up to 5 MW and typically investigate the use of these load reduction strategies on a single turbine only. This paper extends the design, implementation and analysis of individual pitch and TEFs to a range of classically scaled turbines between 5 and 20 MW. In order to avoid designing controllers which favour a particular scale, identical scale‐invariant system identification and controller design processes are applied to each of the turbines studied. Gain‐scheduled optimal output feedback controllers are designed using identified models to target blade root load fluctuations at the first and second multiples of the rotational frequency using IPC and TEFs respectively. The use of IPC and TEFs is shown in simulations to provide significant reductions in fatigue loads at the blade root. Fatigue loads on non‐rotating components such as the yaw bearing and tower root (yaw moment) are also reduced with the use of TEFs. Individual pitch performance is seen to be slightly lower on larger turbines, potentially due to a combination of reduced actuator bandwidth and movement of the rotational frequency of larger turbines into a more energetic part of the turbulent spectrum. However, TEF performance is consistent irrespective of scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Individual pitch control (IPC) provides an important means of attenuating harmful fatigue and extreme loads upon the load bearing structures of a wind turbine. Conventional IPC architectures determine the additional pitch demand signals required for load mitigation in response to measurements of the flap‐wise blade‐root bending moments. However, the performance of such architectures is fundamentally limited by bandwidth constraints imposed by the blade dynamics. Seeking to overcome this problem, we present a simple solution based upon a local blade inflow measurement on each blade. Importantly, this extra measurement enables the implementation of an additional cascaded feedback controller that overcomes the existing IPC performance limitation and hence yields significantly improved load reductions. Numerical demonstration upon a high‐fidelity and nonlinear wind turbine model reveals (1) 60% reduction in the amplitude of the dominant 1P fatigue loads and (2) 59% reduction in the amplitude of extreme wind shear‐induced blade loads, compared with a conventional IPC controller with the same robust stability margin. This paper therefore represents a significant alternative to wind turbine IPC load mitigation as compared with light detection and ranging‐based feedforward control approaches.  相似文献   

9.
H. Namik  K. Stol 《风能》2010,13(1):74-85
Floating wind turbines offer a feasible solution for going further offshore into deeper waters. However, using a floating platform introduces additional motions that must be taken into account in the design stage. Therefore, the control system becomes an important component in controlling these motions. Several controllers have been developed specifically for floating wind turbines. Some controllers were designed to avoid structural resonance, while others were used to regulate rotor speed and platform pitching. The development of a periodic state space controller that utilizes individual blade pitching to improve power output and reduce platform motions in above rated wind speed region is presented. Individual blade pitching creates asymmetric aerodynamic loads in addition to the symmetric loads created by collective blade pitching to increase the platform restoring moments. Simulation results using a high‐fidelity non‐linear turbine model show that the individual blade pitch controller reduces power fluctuations, platform rolling rate and platform pitching rate by 44%, 39% and 43%, respectively, relative to a baseline controller (gain scheduled proportional–integral blade pitch controller) developed specifically for floating wind turbine systems. Turbine fatigue loads were also reduced; tower side–side fatigue loads were reduced by 39%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The non‐linear behaviour of wind turbines demands control strategies that guarantee the robustness of the closed‐loop system. Linear parameter‐varying (LPV) controllers adapt their dynamics to the system operating points, and the robustness of the closed loop is guaranteed in the controller design process. An LPV collective pitch controller has been developed within this work to regulate the generator speed in the above rated power production control zone. The performance of this LPV controller has been compared with two baseline control strategies previously designed, on the basis of classical gain scheduling methods and linear time‐invariant robust H controllers. The synthesis of the LPV controller is based on the solution of a linear matrix inequalities system, proposed in a mixed‐sensitivity control scenario where not only weight functions are used but also an LPV model of the wind turbine is necessary. As a contribution, the LPV model used is derived from a family of linear models extracted from the linearization process of the wind turbine non‐linear model. The offshore wind turbine of 5 MW defined in the Upwind European project is the used reference non‐linear model, and it has been modelled using the GH Bladed 4.0 software package. The designed LPV controller has been validated in GH Bladed, and an exhaustive analysis has been carried out to calculate fatigue load reductions on wind turbine components, as well as to analyse the load mitigation in some extreme cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Q. Lu  R. Bowyer  B.Ll. Jones 《风能》2015,18(8):1451-1468
As the size of wind turbines increases, the effects of dynamic loading on the turbine structures become increasingly significant. There is therefore a growing demand for turbine control systems to alleviate these unsteady structural loads in addition to maintaining basic requirements such as power and speed regulation. This has motivated the development of blade individual pitch control (IPC) methodologies, many of which employ the Coleman transformation to simplify the controller design process. However, and as is shown in this paper, the Coleman transformation significantly alters the rotational system dynamics when these are referred to the non‐rotating frame of reference, introducing tilt–yaw coupling in the process. Unless this transformation is explicitly included in the model employed for IPC design, then the resulting controllers can yield poor performance. Therefore, in this paper, we show how to model the Coleman transformation in a form that is amenable to IPC analysis and synthesis. This enables us to explain why traditional design parameters of gain and phase margin are poor indicators of robust stability and hence motivate the need for a multivariable design approach. The robust multivariable IPC approach advocated in this paper is based upon loop shaping and has numerous desirable properties, including reliable stability margins, improved tilt–yaw decoupling and simultaneous rejection of disturbance loads over a range of frequencies. The design of a robust multivariable IPC is discussed, and simulation results are presented that demonstrate the efficacy of this controller, in terms of load reduction on both rotating and non‐rotating turbine parts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The reduction of structural loads is becoming an important objective for the wind turbine control system due to the ever‐increasing specifications/demands on wind turbine rated power and related growth of turbine dimensions. Among various control algorithms that have been researched in recent years, the individual pitch control has demonstrated its effectiveness in wind turbine load reduction. Since the individual pitch control, like other load reduction algorithms, requires higher levels of actuator activity, one must take actuator constraints into account when designing the controller. This paper presents a method for the inclusion of such constraints into a predictive wind turbine controller. It is shown that the direct inclusion of constraints would result in a control problem that is nonconvex and difficult to solve. Therefore, a modification of the constraints is proposed that ensures the convexity of the control problem. Simulation results show that the developed predictive control algorithm achieves individual pitch control objectives while satisfying all imposed constraints.  相似文献   

13.
N. Hara  S. Tsujimoto  Y. Nihei  K. Iijima  K. Konishi 《风能》2017,20(7):1187-1206
This paper discusses the model‐based design of a blade pitch controller for a floating offshore wind turbine (FOWT) scale model. A mathematical model of the FOWT is constructed from an input–output measurement in an experiment using system identification. The blade pitch controller is designed by an control method, and the effectiveness of the controller is evaluated by means of a basin experiment using the FOWT scale model. The results show that the blade pitch controller is effective in reducing platform pitch motion and rotor speed fluctuation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
针对经典PID变桨距控制器超调量大、波动剧烈等缺陷,提出了一种采用模糊PI控制与前馈控制相结合的控制器来控制浆距角,进而使机组功率稳定在额定功率附近的控制思路。通过对某1.5MW风力发电机组进行仿真,结果表明,该控制器控制效果优于经典PID变桨距控制器。  相似文献   

15.
A. Kumar  K. Stol 《风能》2010,13(5):419-432
As wind turbines are becoming larger, wind turbine control must now encompass load control objectives as well as power and speed control to achieve a low cost of energy. Due to the inherent non‐linearities in a wind turbine system, the use of non‐linear model‐based controllers has the potential to increase control performance. A non‐linear feedback linearization controller with an Extended Kalman Filter is successfully used to control a FAST model of the controls advanced research turbine with active blade, tower and drive‐train dynamics in above rated wind conditions. The controller exhibits reductions in low speed shaft fatigue damage equivalent loads, power regulation and speed regulation when compared to a Gain Scheduled Proportional Integral controller, designed for speed regulation alone. The feedback linearization controller shows better rotor speed regulation than a Linear Quadratic Regulator (LQR) at close to rated wind speeds, but poorer rotor speed regulation at higher wind speeds. This is due to modeling inaccuracies and the addition of unmodeled dynamics during simulation. Similar performance between the feedback linearization controller and the LQR in reducing drive‐train fatigue damage and power regulation is observed. Improvements in control performance may be achieved through increasing the accuracy of the non‐linear model used for controller design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The dimensions of offshore wind turbine (OWT) support structures are governed by fatigue considerations. For 6‐ to 10‐MW OWTs, wave loads are often dominating in terms of fatigue utilization. The present work proposes a control scheme to reduce the wave‐induced fatigue loads in OWT support structures. The control scheme applies collective pitch control to increase both the damping and stiffness of the fore‐aft vibration modes. With conventional active tower damping, efficient wave disturbance rejection is restricted to a narrow frequency range around the first fore‐aft modal frequency. The proposed control scheme achieves efficient wave disturbance rejection across a broader frequency range. Here, tower feedback control is implemented via an auxiliary control loop. Based on a low‐fidelity model, the effect of the tower feedback loop on the stability margins of the basic controller is analysed. The results show that, within certain boundaries, the stability margins are improved by the stiffness term in the tower feedback loop. Consequently, the need to reduce the bandwidth of the basic controller to accommodate tower feedback control is relaxed. Based on time‐domain simulations carried out in an aero‐hydro‐servo‐elastic simulation tool, the lifetime effects of the proposed control scheme are analysed. Compared with conventional active tower damping, a more favourable trade‐off between adverse side effects and the support structure's fatigue damage is achieved with the proposed control scheme.  相似文献   

17.
The use of upstream wind measurements has motivated the development of blade‐pitch preview controllers for improving rotor speed tracking and structural load reduction beyond that achievable via conventional feedback control. Such preview controllers, typically based upon model predictive control (MPC) for its constraint handling properties, alter the closed‐loop dynamics of the existing blade‐pitch feedback control system. This can result in a deterioration of the robustness properties and performance of the existing feedback control system. Furthermore, performance gains from utilising the upcoming real‐time measurements cannot be easily distinguished from the feedback control, making it difficult to formulate a clear business case for the use of preview control. Therefore, the aim of this work is to formulate a modular MPC layer on top of a given output‐feedback blade‐pitch controller, with a view to retaining the closed‐loop robustness and frequency‐domain performance of the latter. The separate nature of the proposed controller structure enables clear and transparent quantification of the benefits gained by using preview control, beyond that of the underlying feedback controller. This is illustrated by results obtained from high‐fidelity closed‐loop turbine simulations, showing the proposed control scheme incorporating knowledge of the oncoming wind and constraints achieved significant 43% and 30% reductions in the rotor speed and flap‐wise blade moment standard deviations, respectively. Additionally, the chance of constraint violations on the rotor speed decreased remarkably from 2.15% to 0.01%, compared to the nominal controller. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The increasing size of modern wind turbines also increases the structural loads caused by effects such as turbulence or asymmetries in the inflowing wind field. Consequently, the use of advanced control algorithms for active load reduction has become a relevant part of current wind turbine control systems. In this paper, an individual blade pitch control law is designed using multivariable linear parameter‐varying control techniques. It reduces the structural loads both on the rotating and non‐rotating parts of the turbine. Classical individual blade pitch control strategies rely on single‐control loops with low bandwidth. The proposed approach makes it possible to use a higher bandwidth since it accounts for coupling at higher frequencies. A controller is designed for the utility‐scale 2.5 MW Liberty research turbine operated by the University of Minnesota. Stability and performance are verified using the high‐fidelity nonlinear simulation and baseline controllers that were directly obtained from the manufacturer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This article deals with nonlinear model‐based control design for wind turbines. By systematically integrating several mechanical degrees of freedom in the control design model, the load mitigation potential from the proposed multivariable control framework is demonstrated. The application of the linear matrix inequality (LMI)‐based control design is discussed in detail. Apart from the commonly considered power production mode, an extended operating range to provide stabilization of the electrical grid through power tracking is considered. This control functionality allows for an evaluation of the resulting fatigue and ultimate loads for power tracking at different dynamic requirements. The results indicate that under the impact of a dedicated control scheme, this functionality is feasible with respect to the occurring loads and operational behavior of the wind turbine.  相似文献   

20.
Operation of wind turbines in the full‐load region mandates that the produced power is kept at a rated value to minimize structural loads and thereby reduce fatigue damage. This is usually achieved by pitching the rotor blades in order to limit the aerodynamic torque in high wind speeds. The pitch actuators usually present a hard constraint in terms of the amplitude and rate of saturation. In this paper, we propose a method to address pitch actuator amplitude and rate saturation by designing anti‐windup controllers in the linear parameter‐varying framework. The proposed design method guarantees the closed‐loop system stability and a prescribed level of performance while it decreases the pitch activity for regulating the generated power to the nominal power during sudden wind gusts. The anti‐windup controller designed to minimize the norm of the closed‐loop system is gain‐scheduled on the basis of the operating condition of the turbine, as well as the states of amplitude and rate saturation of the pitch actuator. The effectiveness of the proposed control design method is demonstrated using high‐fidelity aeroelastic dynamic simulation tools. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号