首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large eddy simulations (LES) of the flow past a wind turbine with and without tower and nacelle have been performed at 2 tip speed ratios (TSR, ), λ=3 and 6, where the latter corresponds to design conditions. The turbine model is placed in a virtual wind tunnel to reproduce the “Blind test 1” experiment performed at the Norwegian University of Science and Technology (NTNU) closed‐loop wind tunnel. The wind turbine was modeled using the actuator line model for the rotor blades and the immersed boundary method for the tower and nacelle. The aim of the paper is to highlight the impact of tower and nacelle on the turbine wake. Therefore, a second set of simulations with the rotating blades only (neglecting the tower and nacelle) has been performed as reference. Present results are compared with the experimental measurements made at NTNU and numerical simulations available in the literature. The tower and nacelle not only produce a velocity deficit in the wake but they also affect the turbulent kinetic energy and the fluxes. The wake of the tower interacts with that generated by the turbine blades promoting the breakdown of the tip vortex and increasing the mean kinetic energy flux into the wake. When tower and nacelle are modeled in the numerical simulations, results improve significantly both in the near wake and in the far wake.  相似文献   

2.
Model wind turbine arrays were developed for the purpose of investigating the wake interaction and turbine canopy layer in a standard cartesian and row‐offset turbine array configurations. Stereographic particle image velocimetry was used to collect flow data upstream and downstream of entrance and exit row turbines in each configuration. Wakes for all cases were analyzed for energy content and recovery behavior including entrainment of high‐momentum flow from above the turbine canopy layer. The row‐offset arrangement of turbines within an array grants an increase in streamwise spacing of devices and allows for greater wake remediation between successive rows. These effects are seen in exit row turbine wakes as changes to statistical quantities including the in‐plane Reynolds stress, , and the production of turbulence. The recovery of wakes also strongly mitigates the perceived underperformance of wind turbines within an array. The flux of kinetic energy is demonstrated to be more localized in the entrance rows and in the offset arrangement. Extreme values for the flux of kinetic energy are about 7.5% less in the exit row of the cartesian arrangement than in the offset arrangement. Measurements of mechanical torque at entrance and exit row turbines lead to curves of power coefficient and demonstrate an increase in efficiency in row‐offset configurations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A reduced‐order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back‐projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced‐order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large‐scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open‐loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root‐mean‐square error.  A high‐level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.  相似文献   

4.
Shengbai Xie  Cristina Archer 《风能》2015,18(10):1815-1838
Mean and turbulent properties of the wake generated by a single wind turbine are studied in this paper with a new large eddy simulation (LES) code, the wind turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale‐dependent Lagrangian dynamical model of the sub‐grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS is first tested by simulating neutral boundary layers without and with a wind turbine and then used to study the common assumptions of self‐similarity and axisymmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. We find that the wind velocity deficit generally remains self similarity to a Gaussian distribution in the horizontal. In the vertical, the Gaussian self‐similarity is still valid in the upper part of the wake, but it breaks down in the region of the wake close to the ground. The horizontal expansion of the wake is always faster and greater than the vertical expansion under neutral stability due to wind shear and impact with the ground. Two modifications to existing equations for the mean velocity deficit and the maximum added turbulence intensity are proposed and successfully tested. The anisotropic wake expansion is taken into account in the modified model of the mean velocity deficit. Turbulent kinetic energy (TKE) budgets show that production and advection exceed dissipation and turbulent transport. The nacelle causes significant increase of every term in the TKE budget in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Field‐scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5‐MW wind turbine and 1 at a wind farm with numerous 2‐MW turbines. The experiments occurred under near‐neutral thermal conditions. Ground‐based lidar was used to measure wake velocities, and a vertical array of met‐mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low‐resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory‐ and utility‐scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor‐scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large‐scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.  相似文献   

6.
The presented work investigates the impact of different sheared velocity profiles in the atmospheric boundary layer on the characteristics of a wind turbine by modifying the wall roughness coefficients in the logarithmic velocity profile. Moreover, the rotor and wake characteristics in dependence of the turbulence boundary conditions are investigated. In variant I, the turbulence boundary conditions are defined in accordance to the logarithmic velocity profile with different wall roughness lengths. In variant II, the turbulent kinetic energy and turbulent viscosity remain independent of the velocity profile and represent the free‐stream turbulence level. With an increase of the shear in the velocity profile, the amplitudes in the 3/rev characteristics of rotor thrust and rotor torque, induction factors, and effective angles of attack are increased. In variant I, the overall levels of thrust coefficient are hardly affected by the velocity profiles resulting from different wall roughness length values. The power coefficient is reduced about 1%. Conversely, compared with variant II, a difference of 2% in the power coefficient has been detected. Moreover, the wake recovery process strongly depends on the turbulence boundary condition. Simulations are carried out on an industrial 900‐kW wind turbine with the incompressible U‐RANS solver THETA.  相似文献   

7.
A numerical framework for simulations of wake interactions associated with a wind turbine column is presented. A Reynolds‐averaged Navier‐Stokes (RANS) solver is developed for axisymmetric wake flows using parabolic and boundary‐layer approximations to reduce computational cost while capturing the essential wake physics. Turbulence effects on downstream evolution of the time‐averaged wake velocity field are taken into account through Boussinesq hypothesis and a mixing length model, which is only a function of the streamwise location. The calibration of the turbulence closure model is performed through wake turbulence statistics obtained from large‐eddy simulations of wind turbine wakes. This strategy ensures capturing the proper wake mixing level for a given incoming turbulence and turbine operating condition and, thus, accurately estimating the wake velocity field. The power capture from turbines is mimicked as a forcing in the RANS equations through the actuator disk model with rotation. The RANS simulations of the wake velocity field associated with an isolated 5‐MW NREL wind turbine operating with different tip speed ratios and turbulence intensity of the incoming wind agree well with the analogous velocity data obtained through high‐fidelity large‐eddy simulations. Furthermore, different cases of columns of wind turbines operating with different tip speed ratios and downstream spacing are also simulated with great accuracy. Therefore, the proposed RANS solver is a powerful tool for simulations of wind turbine wakes tailored for optimization problems, where a good trade‐off between accuracy and low‐computational cost is desirable.  相似文献   

8.
Large loading events on wind turbine rotor blades are often associated with transient bursts of coherent turbulent energy in the turbine inflow. These coherent turbulent structures are identified as peaks in the three‐dimensional, instantaneous, turbulent shearing stress field. Such organized inflow structures and the accompanying rotor aeroelastic responses typically have timescales of only a few seconds and therefore do not lend themselves to analysis by conventional Fourier spectral techniques. Wavelet analysis offers the ability to study more closely the spectral decomposition of short‐period events such as the interaction of coherent turbulence with a moving rotor blade. In this paper we discuss our initial progress in the application of wavelet analysis techniques to the decomposition and interpretation of turbulence/rotor interaction. We discuss the results of using both continuous and discrete wavelet transforms for our application. Several examples are given of the techniques applied to both observed turbulence and turbine responses and those generated using numerical simulations. We found that the presence of coherent turbulent structures, as revealed by the inflow Reynolds stress field, is a major contributor to large load excursions. These bursts of coherent turbulent energy induce a broadband aeroelastic response in the turbine rotor as it passes through them. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In the present work, the wake development behind small‐scale wind turbines is studied when introducing local topography variations consisting of a series of sinusoidal hills. Additionally, wind‐tunnel tests with homogeneous and sheared turbulent inflows were performed to understand how shear and ambient turbulence influence the results. The scale of the wind‐turbine models was about 1000 times smaller than full‐size turbines, suggesting that the present results should only be qualitatively extrapolated to real‐field scenarios. Wind‐tunnel measurements were made by means of stereoscopic particle image velocimetry to characterize the flow velocity in planes perpendicular to the flow direction. Over flat terrain, the wind‐turbine wake was seen to slowly approach the ground while it propagated downstream. When introducing hilly terrain, the downward wake deflection was enhanced in response to flow variations induced by the hills, and the turbulent kinetic energy content in the wake increased because of the speed‐up seen over the hills. The combined wake observed behind 2 streamwise aligned turbines was more diffused and when introducing hills, it was more prone to deflect towards the ground compared to the wake behind an isolated turbine. Since wake interactions are common at sites with multiple turbines, this suggested that it is important to consider the local hill‐induced velocity variations when onshore wind farms are analysed. Differences in the flow fields were seen when introducing either homogeneous or sheared turbulent inflow conditions, emphasizing the importance of accounting for the prevailing turbulence conditions at a given wind‐farm site to accurately capture the downstream wake development.  相似文献   

10.
In this study, the performance, drag, and horizontal midplane wake characteristics of a vertical‐axis Savonius wind turbine are investigated experimentally. The turbine is drag driven and has a helical configuration, with the top rotated 180° relative to the bottom. Both performance and wake measurements were conducted in four different inflow conditions, using Reynolds numbers of ReD≈1.6×105 and ReD≈2.7×105 and turbulence intensities of 0.6% and 5.7%. The efficiency of the turbine was found to be highly dependent on the Reynolds number of the incoming flow. In the high Reynolds number flow case, the efficiency was shown to be considerably higher, compared with the lower Reynolds number case. Increasing the incoming turbulence intensity was found to mitigate the Reynolds number effects. The drag of the turbine was shown to be independent of the turbine's rotational speed over the range tested, and it was slightly lower when the inflow turbulence was increased. The wake was captured for the described inflow conditions in both optimal and suboptimal operating conditions by varying the rotational speed of the turbine. The wake was found to be asymmetrical and deflected to the side where the blade moves opposite to the wind. The largest region of high turbulent kinetic energy was on the side where the blade is moving in the same direction as the wind. Based on the findings from the wake measurements, some recommendations on where to place supplementary turbines are made.  相似文献   

11.
A wind tunnel experiment has been performed to quantify the Reynolds number dependence of turbulence statistics in the wake of a model wind turbine. A wind turbine was placed in a boundary layer flow developed over a smooth surface under thermally neutral conditions. Experiments considered Reynolds numbers on the basis of the turbine rotor diameter and the velocity at hub height, ranging from Re = 1.66 × 104 to 1.73 × 105. Results suggest that main flow statistics (mean velocity, turbulence intensity, kinematic shear stress and velocity skewness) become independent of Reynolds number starting from Re ≈ 9.3 × 104. In general, stronger Reynolds number dependence was observed in the near wake region where the flow is strongly affected by the aerodynamics of the wind turbine blades. In contrast, in the far wake region, where the boundary layer flow starts to modulate the dynamics of the wake, main statistics showed weak Reynolds dependence. These results will allow us to extrapolate wind tunnel and computational fluid dynamic simulations, which often are conducted at lower Reynolds numbers, to full‐scale conditions. In particular, these findings motivates us to improve existing parameterizations for wind turbine wakes (e.g. velocity deficit, wake expansion, turbulence intensity) under neutral conditions and the predictive capabilities of atmospheric large eddy simulation models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this work is to investigate the atmospheric boundary‐layer (ABL) flow and the wind turbine wake over forests with varying leaf area densities (LAD). The forest LAD profile used in this study is based on a real forest site, Ryningsnäs, located in Sweden. The reference turbine used to model the wake is a well‐documented 5‐MW turbine, which is implemented in the simulations using an actuator line model (ALM). All simulations are carried out with openFOAM using the Reynolds averaged Navier‐Stokes (RANS) approach. Twelve forest cases with leaf area index (LAI) ranging from 0.42 to 8.5 are considered. Results show that the mean velocity decreases with increasing LAI within the forest canopy, but increases with LAI above the hub height. Meanwhile, the turbulent kinetic energy (TKE) varies nonmonotonically with forest density. The TKE increases with forest density and reaches to its maximum at an average LAI of 1.70, afterwards, it decreases gradually as the density increases. It is also observed that the forest density has a clear role in the wake development and recovery. Comparisons between no‐forest and forest cases show that the forest characteristics help in damping the added turbulence from the turbine. As a consequence, the forest with the highest upstream turbulence has the shortest wake downstream of the turbine.  相似文献   

13.
An experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight‐cut wing tip and a downstream‐facing winglet shape are compared on the same two‐bladed rotor operated at its design tip speed ratio. Phase‐averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time‐averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase‐averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.  相似文献   

14.
The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model:

15.
In this study, we performed a suite of flow simulations for a 12‐wind‐turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low‐level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large‐eddy simulation technique with an actuator‐line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocity deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. To observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.  相似文献   

16.
A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations, superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large‐eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully developed stage in the domain. The performance of the method is verified by comparing the turbulence intensity and spectral distribution of the turbulent energy to the spectral distribution of turbulence generated by the IEC suggested Mann model. Second, the synthetic turbulence and wind shear is used as input for simulations with a wind turbine, represented by an actuator line model, to evaluate the development of turbulence in a wind turbine wake. The resulting turbulence intensity and spectral distribution, as well as the meandering of the wake, are compared to field data. Overall, the performance of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower‐order models. The conclusion is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
S. McTavish  D. Feszty  F. Nitzsche 《风能》2014,17(10):1515-1529
An experiment was conducted to evaluate the initial wake expansion in scaled wind turbine tests as a means to guide future wake interference studies. Five scaled wind turbine rotors with different diameters were designed for testing in a closed‐loop water channel to evaluate the effects of blockage on the initial wake expansion behind a wind turbine. The initial wake expansion was assessed by using quantitative dye visualization to identify the propagation of tip vortices downstream of the rotor. The thrust coefficient developed by the scaled models was recorded using a six‐component balance and was correlated to the downstream wake expansion. The rotors used in the experiment were operated at a tip speed ratio of 6, a Reynolds number based on the tip speed and tip chord of approximately 23,000 and resulted in blockage values that ranged from 6% to 25%. Dye visualization indicated that the initial wake expansion downstream of a rotor was narrowed and that tip vortex pairing behaviour was modified because of increasing blockage. Blockage effects were significant and resulted in a wake that was more than 50% narrower when blockage was 25% compared with the observed expansion with 10% blockage. A computational simulation was conducted with the Generalized Unsteady Vortex Particle (GENUVP) discrete vortex method code using the rotor in freestream conditions and was compared with the experiments. The magnitude of the wake expansion in the freestream computations was similar to the wake expansion in the experiment when blockage was less than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The three-dimensional near-wake of a model horizontal-axis wind turbine has been measured for three operating conditions: stalled flow over the blades, close to optimum performance, and approaching runaway. The measurements of the mean velocity and turbulence at six axial locations document the formation and development of the near-wake. For the two highest tip speed ratios, the tip vortices are clearly identifiable from the contours of axial velocity and vorticity, and turbulent kinetic energy. At the lowest tip speed ratio, the turbulence level is also high within the blade wakes and these wakes are larger, because of separation in the flow over the blades. The wake structure is simplest for the condition closest to the optimum where the bound vorticity is almost constant with radius. As the tip speed ratio increases, the pitch of the tip vortices decreases and the angular momentum within them increases. This angular momentum reduces the power available from the turbine. The implication is that the structure of the tip vortices must be included in computational models intended to cover the entire operating range of a turbine.  相似文献   

19.
20.
The near-wake turbulent structure that is downwind of a medium-sized, horizontal axis wind turbine at a distance of one rotor diameter is discussed. The experimental site is the Samos Island Wind Park comprising nine wind turbines installed on the top of a 400 m-high saddle. The analysis is based on experimental data obtained mainly under strong wind conditions by two masts erected upstream and downstream of a wind turbine. The field of wind turbulence is examined both in integral and spectral form. Consideration of the perturbation produced by the tower construction is crucial in the interpretation of results. Observations show that the turbulent field varies from the edge to the center of the wake and strongly depends on the incident wind speed. Increased turbulent levels are observed near the blade tips, with evidence of a similar trend around the hub height for all wind speeds. Decreases of wind turbulence are observed in mid frequencies inside the wake due to the reduced shear associated with the flat crosswind velocity profile. This effect seems to dominate in the variation of the integral values of the longitudinal wind component variance. The low frequency portion of wind spectra reverses behavior in high wind speeds, i.e., an increase in energy relative to background values is observed. This is probably due to the shape of the turbine characteristic power curve. Cross-wind profiles of turbulent shear stresses at the lower boundary of the wake are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号