首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正在开发容量相当于现有锂离子电池10倍的新型电池方面,研究人员向前迈出了一步。研究人员一直在试验一种名为LLZO的"深红色陶瓷"材料,目的是加快锂-空气电池的实用化。锂-空气电池的开发已经持续了数十年,但被认为不够稳定而无法投入实用。LLZO能催生比锂离子电池更安全、能量密度更高和续航时间更长的电池。研究人员在美国能源部橡树岭国家实验室使用电子显微镜对其性质进行了研究。美国能源部橡树岭国家实验室研究人员马成(Cheng Ma,音译)说,传统锂离子电  相似文献   

2.
目前,就动力电池能量密度而言,从镍氢电池的80Wh/kg到锂离子电池的150Wh/kg[1],再到锂离子聚合物电池的180Wh/kg,科学家不断地把电池的能量密度推向更高的水平。在锂离子电池体系中,正极材料的比容量很大程度上决定了电池的能量密度。从正极材料的比容量(见表1)来看,目前常规锂离子电池体系的能量密度已经很难继续提高。因此,迫切需要开发更高能量密度的新型电  相似文献   

3.
正加拿大阿尔伯塔大学的一个研究小组日前用碳纳米管材料开发出一种新型电池。与目前市场上普通的锂离子电池相比,新型电池充电速度更快,容量更大,使用寿命更长。相关论文发表在最新一期的《科学报告》杂志上。负责此项研究的加拿大阿尔伯塔大学材料工程学博士崔欣伟(音译)说:"我们曾经尝试过多种不同的材料,但最终还是确定使用碳纳米管。新开发出的这种电化学技术,能够最大程度发挥碳纳米管材料的优势,让电池获得更高的能量密度和功率密度。"  相似文献   

4.
高能量密度的电极活性材料是提高电芯能量密度的关键。提高锂离子电池能量密度的途径主要包括开发高比容量正负极材料和高放电电压平台正极材料。本研究综述了几种典型的具有高能量密度锂离子电池正、负极材料的最新研究进展,包括多电子反应、富锂、聚阴离子和镍锰酸锂正极材料以及硬碳、硅基和锡基负极材料,介绍了各种材料的特点和电化学性能,重点阐述了制备这些材料的典型方法和进展,并展望了高能量密度锂离子电池的发展方向和应用前景。  相似文献   

5.
锂离子电池是目前应用最为广泛的二次电池,但其能量密度仍无法满足人们的要求。锂离子电池的能量密度很大程度上取决于所用的电极材料,因此,探索性能优越的负极材料是锂离子电池研究的重要课题。综述了石墨烯基纳米复合材料作为锂离子电池负极的研究进展,分析了单一石墨烯、二元及三元石墨烯基纳米复合材料的结构对储锂性能的影响,指出了未来的研究方向。  相似文献   

6.
正一、概述锂离子二次电池是目前商业上应用最广泛的可充电电池。与传统的铅酸电池、镍氢电池等相比,它不仅具有能量密度高、工作温度范围宽、无记忆效应、储存寿命长等特点,而且污染小,符合当前绿色环保的要求。当前商业应用的锂离子电池负极材料主要为石墨类负极材料。然而,石墨类负极材料的缺点在于低的能量密度(375m Ah/g)和在电化学过程中锂沉积的安全问题。因此,近年来,行业对于具有低成本、高安全性能、高能量密  相似文献   

7.
<正>锂离子电池具有能量密度高、循环寿命长和环境污染少等优点,成为世界各国研究的重点,并且在电脑、手机和其他便携式电子设备中得到了广泛应用。然而,随着电动汽车和先进电子设备的快速发展,对锂离子电池的能量密度提出了更高的要求~([1-3])。如何提高锂离子电池的能量密度,关键在于电极材料的改善和性能的提高。目前商用锂离子电池的负极材料以石墨类材料为主,由于其理论比容量较低(比容量只有372m Ah/g),且倍率性  相似文献   

8.
高电压、高容量、无记忆效应和循环寿命长是锂离子电池作为性能卓越的新一代绿色高能电池的显著特点。随着3C产品的不断更新换代,特别是手机的智能化和轻薄化,用于3C产品的锂离子电池需要不断地提高能量密度。钴酸锂(LiCoO2)材料由于具有放电电压平台高、放电容量大、能量密度高的优势,一直是3C产品用锂离子电池的首选正极材料。除3C产品外,锂离子电池在新能源汽车(包括纯电动、混合动力等)、电动自行车及其他电动代步工  相似文献   

9.
<正>能量密度的提升是锂离子电池领域的研究重点,而正极材料是决定锂离子电池能量密度的关键。镍锰酸锂材料是一种高电压的正极材料,具有高能量密度和良好的倍率性能;然而,其自身的高工作电压会显著加速电极材料表面的副反应,严重损害电极材料的结构稳定性和长循环性能,限制了它在高比能动力电池  相似文献   

10.
由于钠资源储量丰富、成本低廉,钠离子电池近年来受到了国内外研究人员的广泛关注。但由于钠离子重量及其半径大于锂离子,这必然引起对电极材料不同的要求,从而限制了钠离子电池产生如锂离子电池一样的电化学性能。研究发展优异的电极材料应用于钠离子电池成为了关键。相对于目前报道的许多无机电极材料而言,有机电极材料具有储量丰富、结构多样、环境友好等特点,同时具有很高的理论能量密度,极具研究价值。综述了3类典型有机电极材料在钠离子电池中的应用,并对有机电极材料未来的发展进行了展望,将为钠离子电池电活性有机材料的研究提供十分有用的资料。  相似文献   

11.
<正>在国家重点研发计划的支持下,北京大学夏定国教授团队开展新型高比能锰基正极材料研究,突破了掺杂、包覆、纳米形貌等传统改性方法的限制,氥将LiMO2相与单层Li2MnO3相复合制备出了一种O2构型的锰基富锂动力电池正极材料。这种正极材料具有400mAh/g以上的放电比容量和1380Wh/kg以上的比能量密度,为开发比能量大于500Wh/kg的新型锂离子电池提供了可能,是目前国内外已报道的具有最高比能量密度的锂离子电池锰基富锂正极材料。该研究为新型高比能量锂离子电池正极材料的设计思  相似文献   

12.
梁杰铬  罗政  闫钰  袁斌 《材料导报》2018,32(11):1779-1786
在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860mAh/g)、低密度(0.59g/cm3)和低的还原电位(-3.04V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface,SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。  相似文献   

13.
尖晶石结构的镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4)具有三维扩散通道,有利于锂离子的传输且结构稳定,具有高的能量密度与功率密度,是未来最具实用价值的功率型锂离子电池正极材料之一。其中倍率是评价锂离子电池功率性能的重要标准。综述了形貌控制、体相掺杂、表面包覆等多种提升LiNi_(0.5)Mn_(1.5)O_4倍率性能的方法,阐述了不同方法在改善锂离子电池电化学性能方面的作用,并指出高功率型LiNi_(0.5)Mn_(1.5)O_4正极材料目前需要解决的问题和研究方向。  相似文献   

14.
随着智能手机和笔记本电脑等移动互联网设备的普及,电动自行车和电动摩托车等电动交通工具的推广,以及无人机和太空探测器等航空航天技术的发展,锂离子电池性能面临着更高的发展要求,而体积小、能量密度高已成为高性能锂离子电池的研究方向。本文将分别从结构及工艺设计、正负极配比的优化、高容量负极材料的开发、高电压正极材料及适配电解液等方面,对高能量密度锂离子电池进行概述。  相似文献   

15.
石墨烯具有独特的二维结构、优异的性能和各种潜在的应用价值,是当前材料科学领域研究的热点.通过简要评述石墨烯作为锂离子电池负极材料的结构与性能的关系,讨论了作为电极材料的石墨烯结构与功能调控的重要性,指出石墨烯基纳米材料是一种很有吸引力的锂离子电池电极材料,尤其针对高能量密度与高功率密度电池.  相似文献   

16.
<正>20世纪90年代初,日本索尼公司率先开发出了碳负极材料,显著提高了锂离子电池的安全性和充放电循环寿命,由此,拉开了锂电池实用性研究的大门。与传统化学电源铅酸、镍镉及镍氢电池相比,锂离子电池具有较高的能量密度、电压高、循环寿命长、自放电低、无记忆效应、对环境友好等亮点。经过20多年的发展,锂离子电池能量密度已无法满足现今各种消费类电子设备,尤其是储能设备及电动车对能量密度的需求。硅及含硅材料以其高达4000 mAh/g的比容量,被认为是一种很有前途的负极材料,近几年来,硅基负极的研究已有了很  相似文献   

17.
锂离子电池炭负极材料结构及嵌锂机理研究进展   总被引:1,自引:0,他引:1  
炭材料取代金属锂作为负极后,锂离子电池在商业应用上取得了成功,并以其高能量密度在各种电子设备上广泛使用.锂离子电池的性能很大程度上取决于炭负极材料的微观结构,不同种类的炭材料其电化学性能有很大差别.对近几年所研究的可逆储锂炭材料进行了综述,着重总结了炭负极材料的种类、结构及其嵌锂机理,并展望了锂离子电池炭负极材料的研究进展.  相似文献   

18.
全固态锂离子电池以其高能量密度和高安全性成为具有广泛应用前景的下一代储能技术。然而,全固态锂离子电池的容量过低和寿命过短限制了其在储能领域的应用。其中,正极材料(活性材料、电子导电剂、离子导电剂及固态电解质等)固-固界面稳定性不佳限制了全固态锂离子电池的容量利用率和循环寿命。综上,介绍和讨论了正极材料固-固界面稳定性及优化方法,包括化学稳定性、电化学稳定性、机械稳定性和热稳定性等,同时归纳了常用的全固态锂离子电池正极材料固-固界面优化方法,为全固态锂离子电池的开发和应用提供参考。  相似文献   

19.
随着社会的迅速发展,能源短缺和环境恶化两大问题严重制约了全球社会文明发展以及经济发展。锂离子电池具有能量密度高、自放电率小、无记忆效应、循环性能好等诸多优点,广泛应用于各种电子设备、新能源汽车、储能系统等领域。锂离子电池的正极材料直接决定了电池的性能,研究正极材料的制备方法至关重要。综述了溶胶-凝胶法制备锂离子电池正极材料的研究进展以及溶胶-凝胶法改性正极材料的制备,并对溶胶-凝胶法制备锂离子电池正极材料未来的研究方向进行展望。  相似文献   

20.
正锂离子电池是最常用的储能装置,由于具有便于携带、环境友好和高能量密度等特点,广泛应用于智能手机、笔记本电脑以及电动车中。最常用的负极材料是石墨,其层间的范德华力确保该材料在充放电过程中的稳定性以及循环使用寿命。但由于晶格常数较小限制了锂离子能够插层的位置,容量值低。寻找一种具有高容量以及循环稳定性的材料是当下锂离子电池研究的热点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号