共查询到17条相似文献,搜索用时 78 毫秒
1.
针对虚警目标较多的复杂场景中,传统舰船检测算法检测结果精度偏低的问题,提出了一种基于多特征加权的SAR影像舰船检测优化方法。首先,采用标记分水岭算法对SAR幅度影像进行去陆操作;其次,利用基于对数正态分布的恒虚警率算法,得到去陆SAR影像的候选目标;再次,提取候选目标的长宽比、舰船面积和对比度3个特征;最后,提出变异系数法对3个特征进行权重分配,并结合候选目标的归一化特征矢量计算其特征置信度,再确定最佳置信度,去除候选目标中的虚警目标,优化舰船检测结果。为了验证所提方法,选取不同复杂场景的高分三号SAR影像进行舰船检测实验。实验结果表明,所提方法具有可行性和有效性。 相似文献
2.
改进的SAR图像双参数CFAR舰船检测算法 总被引:3,自引:0,他引:3
双参数CFAR检测中设置了目标窗口、保护窗口和背景窗口3个窗口,并且窗口的大小,滑动步长都要进行经验训练得到,效率低,对距离很近的舰船SAR图像会产生漏检。针对这些不足, 该文提出了一种改进的双参数CFAR检测算法,该算法只取目标窗口和背景窗口,通过把泄露到背景窗口中的舰船部分去除并对背景窗口中的剩余部分进行均值和方差估计来检测舰船,并且将窗口滑动步长取为目标窗口尺寸。相对双参数CFAR算法,结构得到了简化,检测结果的虚警率减小, 对距离很近的舰船不会产生漏检, 计算效率得到了改善。仿真结果表明了方法的有效性。 相似文献
3.
4.
针对常规恒虚警率(CFAR)方法对低信杂比合成孔径雷达(SAR)图像舰船目标检测效果不佳的问题,提出一种结合空间信息的星载SAR图像舰船目标检测方法。该方法通过将像素的空间信息与灰度信息相结合构造联合图像,以提高目标与背景的对比度,然后对联合图像进行CFAR检测。基于不同分辨力实测星载SAR图像舰船目标检测的实验结果表明,与直接基于CFAR的方法相比,该方法对低信杂比SAR图像具有更好的检测性能。 相似文献
5.
基于CFAR级联的SAR图像舰船目标检测算法 总被引:1,自引:0,他引:1
SAR图像舰船目标检测在军事监视和海洋环境监管等方面有着重要的意义。针对SAR图像的特点,提出了一种基于全局CFAR检测与局部CFAR检测级联的舰船目标检测算法。在全局CFAR检测中,通过海杂波特性拟合优选海杂波统计模型,以较高的虚警率筛选潜在的目标点;在局部CFAR检测中,以潜在目标点的连通区域为单位,通过检测窗口的选取、背景像素的确定和海杂波拟合等步骤以后,以较低的虚警率确定目标。最后,通过条件扩张算法和目标像素聚类完善船只细节。实验结果表明,文中算法在保证良好的检测性能的同时,具有检测效率高、舰船细节完整等优点,为舰船目标鉴别和信息提取提供了良好的保障,更加符合实际应用需求。 相似文献
6.
SAR图像舰船目标检测算法的对比研究 总被引:8,自引:0,他引:8
SAR图像舰船目标检测有二种经典算法:双参数CFAR算法和K-分布CFAR算法。本文分析了二种算法的特点,使用RADARSAT卫星不同模式SAR图像分别进行实验,给出二种算法的适应性。 相似文献
7.
SAR图像局部自适应ACCA-CFAR检测算法 总被引:1,自引:0,他引:1
该文在ACCA-CFAR(Automatic Censored Cell Averaging-CFAR)的基础上提出了一种以K分布对SAR图像杂波建模的局部自适应ACCA-CFAR目标检测算法。该算法首先估计局部窗口的K分布参数,然后根据参数确定局部ODV(Ordered Data Variability)门限,进而完成背景像素筛选,最后做出检测判决。文中证明了ODV门限与局部统计模型的参数有关,给出了采用局部自适应门限的理论依据。该文以海面舰船SAR图像为例,证明该算法在海面杂波背景中具有较少的虚警,可以完整地检测出舰船目标,保留更精细的结构特征。 相似文献
8.
合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。 相似文献
9.
SAR图像港口区域舰船检测新方法 总被引:1,自引:0,他引:1
SAR图像港口内舰船检测是SAR图像海洋应用研究的重要方面。快速、准确地检测港口内舰船将大大提高SAR图像的自动解译能力。该文通过分析港口内舰船停靠特点,提出了一种新的SAR图像港口内舰船检测方法。首先基于港口岸线获取港口沿岸区域SAR图像,然后详细分析了港口沿岸区域SAR图像的杂波统计特性,进而采用基于G0分布的CFAR(Constant False Alarm Rate)检测算法完成了港口内舰船检测。实验结果表明,新方法能有效地将不同形状的港口区域的舰船与绝大部分陆地分开,具有港口内舰船检测率高、虚警率低等特点。 相似文献
10.
针对高对比度场景下合成孔径雷达(SAR)图像的实时目标检测问题,提出一种基于级联恒虚警率(CFAR)的SAR图像目标快速检测算法,将二维图像的检测沿距离向和方位向拆分成两个一维的CFAR检测, 采用距离向-方位向级联检测器并加以分割关联方法对目标进行检测。首先,按距离向叠加后进行距离向检测,并进行分割关联以划分不同目标的区域;然后,对过检单元进行方位向检测得到目标位置;同时,进行分割关联,从而实现目标检测。文中利用仿真的SAR图像、MSTAR数据和实测数据进行实验。仿真结果表明:该算法具有速度快、检测率高的优点,满足实时处理要求。 相似文献
11.
在杂波纹理服从Beta分布的极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,POLSAR)图像目标检测中,提出了一种基于多视极化白化滤波(Multilook Polarimetric Whitening Filter,MPWF)的恒虚警(Constant False Alarm Rate,CFAR)检测解析新方法.首先,假设乘积模型中纹理变量服从Beta分布,推导得到MPWF检测量的概率密度函数(Probability Density Function,PDF).然后,对概率密度函数积分得到虚警概率关于检测门限的解析式,并设计相应的CFAR检测流程.最后,提出了基于MPWF的对数累积量估计方法,对Beta分布纹理变量参数u和v进行估计.通过实测数据验证了新方法的有效性.实验结果表明Beta分布对某些区域的极化SAR数据有更好的拟合效果,同时新方法与已有方法相比具有更好的CFAR保持能力. 相似文献
12.
在已有的极化合成孔径雷达(SAR)图像恒虚警(CFAR)检测方法中,存在着高分辨下杂波模型适用性差的难题.为此提出了一种Fisher分布下具有虚警概率解析表达形式的CFAR检测方法.首先,在乘积模型框架下,引入Fisher纹理变量,推导出了极化白化滤波(PWF)检测量的概率密度函数(PDF).然后,对PDF积分得到了虚警概率关于检测门限的解析表达形式,并设计了相应的CFAR检测算法流程.最后,通过机载合成孔径雷达(AIRSAR)实测数据比较了新方法和双参数恒虚警(2P-CFAR)算法及已有的基于K分布、G0分布、Wishart分布的CFAR检测方法的检测性能.结果表明新方法能有效检测出目标,且鲁棒性较强,相比于其他检测方法,品质因数平均高出32.66%. 相似文献
13.
在已有的极化合成孔径雷达(PolSAR)图像恒虚警(CFAR)检测方法中,存在着高分辨下杂波模型适用性差的难题。为此提出了一种Fisher分布下的CFAR检测方法,并定义虚警损失率(CFAR Loss,CL)以量化评估算法的恒虚警保持性能.首先,在乘积模型框架下引入Fisher纹理变量,推导出了多视极化匹配滤波(Multi-look Polarization Matched Filter,MPMF)检测量的概率密度函数(PDF).然后,对PDF积分得到了虚警概率的闭合解析式,并设计了CFAR检测流程.仿真数据和机载合成孔径雷达(Airborne SAR,AIRSAR)数据实验结果表明,与基于K分布、G0分布、Wishart分布的CFAR检测算法以及双参数恒虚警(two-Parameter CFAR,2P-CFAR)算法相比,新方法具有良好的恒虚警保持性能和检测性能,具有较强的鲁棒性,且运算时间未明显增加,相比于其他检测方法,品质因数(Figure of Merit,FoM)平均高出12.80%. 相似文献
14.
基于SAR图像的舰船目标自动检测是海洋监视应用的重要方面,但随着SAR成像能力和图像分辨率的提高,传统的CFAR检测方法已不能满足舰船目标自动检测的要求。针对中高分辨率SAR图像中舰船目标自动检测问题,提出一种基于像素筛选G0分布的SAR图像舰船目标快速检测方法,该方法首先根据像素灰度值出现频率选取阈值对杂波像素进行筛选,然后通过抽样定理对图像进行降分辨率处理,最后再在经过像素筛选的降分辨率图像中实现基于G0分布的自适应CFAR检测。NASA/JPL AIR-SAR实测数据的实验结果表明,该方法不仅能有效减少中高分辨率SAR图像舰船目标自动检测的虚警,而且能显著提高检测效率。 相似文献
15.
等效视数是影响极化合成孔径雷达(PolSAR)图像恒虚警 (CFAR)检测性能的重要参数.目前等效视数的估计大都不是整数,导致已有的基于整数等效视数的CFAR检测方法不再适用.为解决此问题,提出了一种新的PolSAR图像目标CFAR检测解析算法.首先,在Wishart分布假设下,推导出了多视极化白化滤波(MPWF)检测量的概率密度函数;然后对其积分得到了CFAR检测门限关于等效视数的解析表达式;最后通过仿真数据和AIRSAR实测数据比较了新方法与已有的适用于整数等效视数的检测方法和双参数恒虚警(2P-CFAR)检测方法的CFAR检测性能.结果表明新方法中实际虚警概率与给定的恒虚警概率最为接近,更好保证了CFAR检测的恒虚警假设. 相似文献
16.
传统的恒虚警检测器在进行目标检测时,容易受到其他目标和强海杂波的干扰,造成自遮蔽效应,使得大目标和大块地物(陆地、岛屿)回波出现“挖空”现象.通过自适应调整参考单元与保护单元的设置以适应不同的检测环境,在理论上可以有效克服“挖空”现象,但是这种自适应技术在实际雷达中很难应用.针对这种“挖空”现象,以某型导航雷达为例,利用陆地(或岛屿)杂波和大目标在幅度上与海杂波回波的差异对一定范围内的数据进行修复,最后基于导航雷达的实测数据对文中算法进行验证,结果表明,该算法明显改善了导航雷达的回波显示质量,有利于目标的凝聚与跟踪,且运算量适中,便于工程实现. 相似文献