首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FeCoNd thin film with thickness of 166 nm has been fabricated on silicon (1 1 1) substrates by magnetron co-sputtering and annealed for one hour under magnetic field at different temperatures (Ta) from 200 °C to 700 °C. The As-deposited and annealed FeCoNd film samples at Ta ≤ 500 °C were amorphous while the ones obtained at Ta ≥ 600 °C were crystallized. We found that the perpendicular anisotropy field gradually decreases as the annealing temperature increases from room temperature to 300 °C. A well induced in-plane uniaxial anisotropy is achieved at the annealing temperature between 400 and 600 °C. The variation of the dynamic magnetic properties of annealed FeCoNd films can be well explained by the Landau-Lifshitz equation with the variation of the anisotropy field re-distribution and the damping constant upon magnetic annealing. The magnetic annealing might be a powerful post treatment method for high frequency application of magnetic thin films.  相似文献   

2.
FePt thin films with 40 nm thickness were prepared on thermally oxidized Si (001) substrates by dc magnetron sputtering at the nominal growth temperature 375 °C. The effects of annealing on microstructure and magnetic properties of FePt thin films were investigated. The as-deposited FePt thin films show soft magnetic properties. After the as-deposited FePt thin films were annealed at various temperatures and furnace cooled, it is found that the ordering temperature of L10 FePt phase could be reduced to 350 °C. For FePt thin films annealed at 350 °C, the in-plane and out-of-plane coercivities of the films increased to 510 and 543 kA/m, respectively, and the films had hard magnetic properties. A highly (001) orientation was obtained, when FePt thin films were annealed at 600 °C. And the hysteresis loops of FePt thin films annealed at 600 °C show out-of-plane magnetic anisotropy.  相似文献   

3.
We have studied the dependence of dielectric properties on the deposition temperature of BiFeO3 thin films grown by the pulsed laser deposition technique. Thin films have been grown onto amorphous silica glass substrates with pre-patterned Au in-plane capacitor structures. It is shown that on the amorphous glass substrate, BiFeO3 films with a near-bulk permittivity of 26 and coercive field of 80 kV/cm may be grown at a deposition temperature of about 600 °C and 1 Pa oxygen pressure. Low permittivity and higher coercive field of the films grown at the temperatures below and above 600 °C are associated with an increased amount of secondary phases. It is also shown that the deposition of BiFeO3 at low temperature (i.e. 500 °C) and post deposition ex-situ annealing at elevated temperature (700 °C) increases the permittivity of a film. The applied bias and time dependence of capacitance of the films deposited at 700 °C and ex-situ annealed films are explained by the de-pinning of the ferroelectric domain-walls.  相似文献   

4.
Hao Qian  Ping Wu  Yue Tian  Liqing Pan 《Vacuum》2006,80(8):899-903
80 nm-thick Ni50Fe50 layers were sputter-deposited on glass substrates at 400 °C and then Au layers were sputter-deposited on the Ni50Fe50 layers. The Au/Ni50Fe50 bilayer films were annealed in a vacuum of 5×10−4 Pa from 250 to 450 °C for 30 min or 90 min. The characteristics of the Au layers were studied by Auger electron spectroscopy, field emission scanning electron microscopy, X-ray diffraction and a four-point probe technique. When the annealing temperature reaches 450 °C, Fe and Ni atoms diffuse markedly into the Au layer and the Fe content is more than the Ni content. When the annealing temperature is lower than 450 °C, the grain size of the Au layers does not change markedly with annealing temperature. However, as the annealing temperature reaches 450 °C, the annealing promotes the grain growth of the Au layer. As the annealing temperature exceeds 300 °C, the resistivity of the bilayer films increases with increasing annealing temperature. The diffusion of Fe and Ni atoms into the Au layer results in an increase in the resistivity of the annealed bilayer film. Large numbers of Fe and Ni atoms diffusing into the Au layer of the annealed Au/Ni50Fe50 bilayer film lead to a significant decrease in the lattice constant of the Au layer.  相似文献   

5.
The effect of deposition and thermal annealing temperatures on the dry etch rate of a-C:H films was investigated to increase our fundamental understanding of the relationship between thermal annealing and dry etch rate and to obtain a low dry etch rate hard mask. The hydrocarbon contents and hydrogen concentration were decreased with increasing deposition and annealing temperatures. The I(D)/I(G) intensity ratio and extinction coefficient of the a-C:H films were increased with increasing deposition and annealing temperatures because of the increase of sp2 bonds in the a-C:H films. There was no relationship between the density of the unpaired electrons and the deposition temperature, or between the density of the unpaired electrons and the annealing temperature. However, the thermally annealed a-C:H films had fewer unpaired electrons compared with the as-deposited ones. Transmission electron microscopy analysis showed the absence of any crystallographic change after thermal annealing. The density of the as-deposited films was increased with increasing deposition temperature. The density of the 600 °C annealed a-C:H films deposited under 450 °C was decreased but at 550 °C was increased, and the density of all 800 °C annealed films was increased. The dry etch rate of the as-deposited a-C:H films was negatively correlated with the deposition temperature. The dry etch rate of the 600 °C annealed a-C:H films deposited at 350 °C and 450 °C was faster than that of the as-deposited film and that of the 800 °C annealed a-C:H films deposited at 350 °C and 450 °C was 17% faster than that of the as-deposited film. However, the dry etch rate of the 550 °C deposited a-C:H film was decreased after annealing at 600 °C and 800 °C. The dry etch rate of the as-deposited films was decreased with increasing density but that of the annealed a-C:H films was not. These results indicated that the dry etch rate of a-C:H films for dry etch hard masks can be further decreased by thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films.  相似文献   

6.
Multilayer Cr(1 − x)AlxN films with a total thickness of 2 μm were deposited on high-speed steel by medium frequency magnetron sputtering from Cr and Al-Cr (70 at.% Al) targets. The samples were annealed in air at 400 °C, 600 °C, 800 °C and 1000 °C for 1 hour. Films were characterized by cross-sectional scanning electron microscopy and X-ray diffraction analysis. The grain size of the as-deposited multilayer films is about 10 nm, increasing with the annealing temperature up to 100 nm. Interfacial reactions have clearly changed at elevated annealing temperatures. As-deposited films' hardness measured by nanoindentation is 22.6 GPa, which increases to 26.7 GPa when the annealing temperature goes up to 400 and 600 °C, but hardness decreases to 21.2 GPa with further annealing temperature increase from 600 to 1000 °C. The multilayer film adhesion was measured by means of the scratch test combined with acoustic emission for detecting the fracture load. The critical normal load decreased from 49.7 N for the as-deposited films to 21.2 N for the films annealed at 1000 °C.  相似文献   

7.
Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH3)42+ precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV (∼375 nm), blue (∼465 nm), and yellow (∼585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly found that the intensity of light emission at ∼585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 °C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.  相似文献   

8.
Humidity response of Radio Frequency sputtered MgFe2O4 thin films onto alumina substrate, annealed at 400 °C, 600 °C and 800 °C has been investigated. Crystalline phase formation of thin films annealed at different temperature was analyzed by X-ray Diffraction. A particle/grain like microstructure in the grown thin films was observed by Scanning Electron Microscope and Atomic Force Microscope images. Film thickness for different samples was measured in the range 820-830 nm by stylus profiler. Log R (Ω) response measurement was taken for all thin films for 10-90% relative humidity (% RH) change at 25 °C. Resistance of the film increased from 5.9 × 1010 to 3 × 1012 at 10% RH with increase in annealing temperature from 400 °C to 800 °C. A three-order magnitude, 1012 Ω to 109 Ω drop in resistance was observed for the change of 10 to 90% RH for 800 °C annealed thin film. A good linear humidity response, negligible humidity hysteresis and minimum response/recovery time of 4 s/6 s have been measured for 800 °C annealed thin film.  相似文献   

9.
Q. Ye  Z.F. Tang  L. Zhai 《Vacuum》2007,81(5):627-631
Microstructure and hydrophilicity of nano-titanium dioxide (TiO2) thin films, deposited by radio frequency magnetron sputtering, annealed at different temperatures, were studied by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle methods. It is found that the crystal phase transforms from amorphous to rutile structure with increase of annealing temperature from room temperature to 800 °C. It is also indicated that the organic contaminants on the surface of the films can be removed and the oxygen vacancies can be reduced by the annealing treatment. Annealed at the temperature below 300 °C, amorphous TiO2 thin films show rather poor hydrophilicity, and annealed at the temperature range from 400 to 650 °C, the super hydrophilicity anatase of TiO2 thin films can be observed. However, when the annealing temperature reaches 800 °C, the hydrophilicity of the films declines mainly derived from the appearance of rutile.  相似文献   

10.
TiO2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O2 plasma. The TiO2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 °C to 800 °C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 °C. The film annealed at 400 °C showed higher hardness than the film annealed at 600 °C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 °C to 800 °C, as revealed by a decrease in water CA from 87° to 50°. Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.  相似文献   

11.
B.L. Zhu  X.Z. Zhao  G.H. Li  J. Wu 《Vacuum》2010,84(11):1280-870
ZnO thin films were deposited on glass substrates at room temperature (RT) ∼500 °C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 °C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments; the grain size increased and stress relaxed for the films deposited at 200-500 °C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that Eg of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 °C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.  相似文献   

12.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

13.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

14.
T.S. Abhilash 《Thin solid films》2010,518(19):5576-5578
Magnetic properties of alloyed Ohmic contacts of the type AuGe/Ni/Au on GaAs/AlGaAs multilayers with n+ cap layer with different AuGe compositions and Ni-layer thicknesses are examined. Magnetization data indicate that the annealed structures are non-magnetic, at room temperature for commonly used anneal temperatures (∼ 400-430 °C) and Ni-layer thicknesses (10-100 nm). The transformation of Ni to non-magnetic phase begins at ∼ 100 °C, well below temperatures at which extensive alloying with the GaAs substrate takes place. The fraction of Ni transformed to non-magnetic phase on annealing appears to scale with AuGe layer thickness, has a quadratic dependence on anneal temperature and is time independent for time scales of minutes. The data indicate that the Ni layer dissolves into the AuGe layer at temperatures well below that at which alloying between AuGe and GaAs substrate takes place. The dissolved Ni concentration is limited by a solubility that increases with anneal temperature and decreases with decreasing Ge content from that of the AuGe eutectic composition.  相似文献   

15.
A. Nakaruk 《Thin solid films》2010,518(14):3735-9099
Titanium dioxide films were prepared by ultrasonic spray pyrolysis on (0001) α-quartz substrates at 400 °C and/or annealed in air at 600°, 800°, or 1000 °C. The as-deposited films at 400 °C (50 nm grains) and annealed at 600 °C (100 nm grains) showed single-phase anatase of high transparency in the visible region. Films annealed at 800 °C and 1000 °C showed mixed-phase anatase (100 nm grains) plus rutile (700 nm agglomerates) and pure rutile, (700 nm grains), respectively. Raman and X-ray data indicate the presence of residual stress in the films, which may arise from contamination, silicon diffusion into the films, and/or oxygen deficiency.  相似文献   

16.
Fabrication of highly oriented (002) ZnO film on glass by sol-gel method   总被引:1,自引:0,他引:1  
In this study high quality (002) ZnO films were deposited on glass substrate by a sol-gel spin coating process. The as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature in particular. The chemical composition of the precursor sol and the intermediates produced in the films heating process were analyzed by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). The microstructure and its optical properties of ZnO films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence. TGA/DTA showed that a significant weight loss occurred at around 200-300 °C and the weight stabilized at 300 °C. An extremely sharp (002) diffracted peak in XRD patterns indicated the high preference in crystallinity of these films. FESEM micrographs revealed that the films were filled with particulates with size ranging from 10 to 25 nm as post annealing temperature increased from 400 to 500 °C and turned into porous films at 600 °C. UV-Vis has shown that the films were highly transparent under visible light and had a sharp absorption edge in the ultraviolet region at 380 nm. The measured optical band gap values of the ZnO thin films were around 3.24-3.26 eV. Photoluminescence spectra revealed a strong UV emission centered at about 390 nm corresponding to the near-band-edge emission with a weak defect-related emission at about 520 nm. The intensity of UV emission increased with the annealing temperature. This may be attributed to a higher quality ZnO film while annealed at higher temperature.  相似文献   

17.
In this study, CuFeO2 thin films were deposited onto quartz substrates using a sol-gel and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and then annealed at 600 to 800 °C for 2 h in N2. X-ray diffraction patterns showed that the annealed sol-gel-derived films were CuO and CuFe2O4 phases in air annealing. When the films were annealed at 600 °C in N2, an additional CuFeO2 phase was detected. As the annealing temperature increased above 650 °C in N2, a single CuFeO2 phase was obtained. The binding energies of Cu-2p3/2, Fe-2p3/2, and O-1s were 932.5 ± 0.1 eV, 710.3 ± 0.2 eV and 530.0 ± 0.1 eV for CuFeO2 thin films. The chemical composition of CuFeO2 thin films was close to its stoichiometry, which was determined by X-ray photoelectron spectroscopy. Thermodynamic calculations can explain the formation of the CuFeO2 phase in this study. The optical bandgap of the CuFeO2 thin films was 3.05 eV, which is invariant with the annealing temperature in N2. The p-type characteristics of CuFeO2 thin films were confirmed by positive Hall coefficients and Seebeck coefficients. The electrical conductivities of CuFeO2 thin films were 0.28 S cm− 1 and 0.36 S cm− 1 during annealing at 650 °C and 700 °C, respectively, in N2. The corresponding carrier concentrations were 1.2 × 1018 cm− 3 (650 °C) and 5.3 × 1018 cm− 3 (700 °C). The activation energies for hole conduction were 140 meV (650 °C) and 110 meV (700 °C). These results demonstrate that sol-gel processing is a feasible preparation method for delafossite CuFeO2 thin films.  相似文献   

18.
This work reports on the low temperature preparation and characterization of BaZrO3 (BZO) epitaxial thin films by chemical solution deposition (CSD). The X-ray θ-2θ scan and φ-scan measurements have demonstrated that the BZO films exhibit cube-on-cube epitaxy on (100) MgO substrates, with the full width at half maximum (FWHM) for the ω-scan and φ-scan of 0.35° and 0.46°, respectively. The SEM and AFM analyses revealed that the morphology of the films is strongly correlated with annealing temperature. The root mean square roughness for the film annealed at 600 °C is 3.63 nm, while for the film grown at 1000 °C is 5.25 nm.  相似文献   

19.
Silicon carbonitride (SiCN) films were prepared by means of reactive magnetron sputtering of a sintered SiC target on n-type Si (1 0 0) substrates in the reactant gas of nitrogen, and then the films were respectively annealed at 600, 800 and 1100 °C for 5 min in nitrogen ambient. The films were characterized by energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence (PL) spectrophotometry. Intense PL peaks at 370, 400 and 440 nm were observed at room temperature. The results show that annealing temperature and composition play an important role in the structures and PL properties of the films. The annealing temperature of 600 °C favors the formation of the SiC (1 0 9) crystal in the SiCN films, and results in a maximal PL peak. The intensity of the 440 nm PL peak can be improved by increasing the abundance of the Si-C bond.  相似文献   

20.
Y.Y. Kim  H.K. Cho  J.H. Kim  E.S. Jung 《Thin solid films》2008,516(16):5602-5606
We report the effect of growth temperature and annealing on microstructural, elemental and emission properties of as-grown and in-situ annealed MgZnO thin films, containing ∼ 10 at. % Mg, grown at high temperature by RF sputtering. Microstructural analysis carried out by TEM reveals formation of thin oxide layer with increased layer thickness on growth temperature, in the interface between Si substrate and MgZnO thin film. Irrespective of growth temperature, increase in Mg mole fraction with increase in thickness of MgZnO thin film is observed from EDX and AES spectroscopy, and a maximum of 14 at. % Mg is observed at 800 °C. The photoluminescence investigation shows blue shift of 104 meV in MgZnO film grown at 800 °C, compared to the film grown at 600 °C, which is due to the enhancement of the Mg incorporation at higher temperature. In addition, annealing at the growth temperature enhanced the intensity ratio of the UV/deep level emission and increased the grain size. Thermal treatment in a vacuum improved the emission efficiency and changed the origin of the point defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号