首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

2.
采用直流反应磁控溅射In/Zn合金靶材在室温下制备了非晶掺锌氧化铟(a-IZO)薄膜,作为沟道层应用于氧化物薄膜晶体管。通过在沉积过程中适当调节氧气压强,制备的a-IZO薄膜的电阻率可具有10-3~106Ω.cm即109倍的变化范围。在氧气压强Po2=5×10-2Pa制备的薄膜,其可见光范围平均透射率大于85%。试制了基于a-IZO薄膜沟道层的顶栅结构的氧化物薄膜晶体管。测试表明该薄膜晶体管工作在n型沟道增强模式,场效应迁移率为4.25 cm2V-1s-1,电流开关比约为103。实验结果预示a-IZO薄膜在TFT-LCD和AMOLED等平板显示领域具有应用前景。  相似文献   

3.
Halina Czternastek 《Vacuum》2008,82(10):994-997
Al-doped ZnO films were prepared by the dc magnetron sputtering technique on Suprasil-1 substrates at a temperature of 470 K. Plasma-emission monitoring was used to stabilize oxygen flow to the deposition chamber. The effect of substrate position during deposition on the structural, electrical and optical properties of the films was investigated. It was found that preparation of low-resistance films with high optical transmission over the visible region is possible under condition of low plasma effects on the growing film.  相似文献   

4.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

5.
Hu Huang  Shan-tung Tu 《Thin solid films》2009,517(13):3731-3734
Bismuth telluride films were prepared via radio frequency magnetron sputtering. Mixed powders with different composition were used as sputtering targets. Influence of the annealing temperature on surface topography, crystal structure and thermoelectric properties of the films has been investigated. It was found that the grain size increased and the surface roughness decreased with a rising annealing temperature. X-ray diffraction analysis revealed an improved crystallization after the annealing, and that crystal planes perpendicular to c-axis became prominent. High temperature treatments resulted in a decrease of Seebeck coefficient and an increase of electrical conductivity. The highest power factor was obtained after being annealed at 300 °C.  相似文献   

6.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

7.
We report the deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition (APCVD) using a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and trifluoroacetic acid (TFA). This process is potentially scalable for high throughput, large area production.[Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds.Cubic fluorine doped indium oxide (F.In2O3) was deposited at a substrate temperature of 550 °C with growth rates exceeding 8 nm/s. Resistivity was 8 × 10− 4 Ω cm and transmission for a 200 nm film was > 80% with less than 1% haze.  相似文献   

8.
Early stages of film growth were investigated on three different kinds of representative transparent conductive oxide films including tin doped indium oxide (ITO), indium zinc oxide (IZO) and gallium doped zinc oxide (GZO) films deposited on unheated alkali free glass substrates by dc magnetron sputtering. The variations in sheet resistance, film coverage and average surface roughness showed clearly that ITO and GZO films possessed Volmer-Weber growth mode. In contrast, the evolution of islands is not clearly observed for IZO film. The nucleation density of IZO film is considered to be much higher than that of ITO and GZO films.  相似文献   

9.
J.Z. Shi  H.J. Yu 《Vacuum》2008,83(2):249-256
Radio frequency (RF) magnetron sputtering is a promising deposition technique that can produce dense and well-adhered films. This technique is applied to deposit thin HA films on titanium oral implants, which have exhibited excellent bioactive behavior. In this paper, the influence of key deposition parameters, including discharge power, gas composition, process pressure, base pressure, substrate temperature, bias, target-substrate distance on the properties of bioactive films are reviewed. Besides, other influencing factors such as post-deposition heat treatments and initial target materials are also introduced. At last, the future application of RF magnetron sputtering in biomedicine is presented.  相似文献   

10.
本文采用射频反应磁控溅射技术制备氧化铬涂层并在不同温度及不同的保温时间内进行热处理,通过X射线衍射、纳米压痕、摩擦磨损测试仪等研究温度及保温时间对涂层结构、表面形貌、硬度、弹性模量、耐磨性及涂层与基体间的结合力进行研究.研究表明低于其晶化温度(400℃)进行退火对其结构影响不大,其力学性能没有明显提高,而在高于其晶化温度(500℃)进行退火,其结构变化比较明显,同时其力学性能显著提高,其硬度从初始态的12.3 GPa提高到26GPa,相同试验条件下的磨损量也显著降低,从初始态的1.1×10-3 mm3降低到1×10-5 mm3.涂层与基体之间的结合力随着退火温度的提高、保温时间的延长有明显的改善.保温时间对其结构影响不大,但对其表面形貌有一定的影响,在低于晶化温度延长保温时间表面平均粗糙度降低,而高于晶化温度延长保温时间表面平均粗糙度增加.  相似文献   

11.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

12.
Toshiyuki Oya 《Thin solid films》2009,517(20):5837-317
Structure and subsequent properties of films deposited by direct current (dc) magnetron sputtering and pulsed dc magnetron sputtering with or without inductively coupled radio-frequency (rf) plasma using a Ti target have been investigated for various discharge pressures ranging from 0.3 to 2.0 Pa. By cross-sectional scanning electron microscopy, it is found that films deposited by pulsed dc sputtering with an rf plasma at pressures of 0.3 and 1.5 Pa become denser than those deposited by dc sputtering without an rf plasma. Surface roughness also decreases with the presence of rf plasma at all discharge pressures. The change in reflectance correlates well to that in surface roughness. Decrease in resistivity due to the presence of rf plasma is remarkable for discharge pressures of 1.5 and 2.0 Pa and less remarkable for discharge pressures of 0.3 and 0.5 Pa. These result from the increase in crystallinity and film density by the presence of rf plasma in a high pressure range. It is presumed that a Ti film with a fine columnar structure results from the enhancement in the energy transferred to the surface of a growing film due to the increase in ion fraction and ion energy in the combination of pulsed dc and inductively coupled rf discharges. The effects of rf plasma on film structure and properties is more remarkable at higher discharge pressures because in this pressure range, the energy loss that occurred through collision scattering, inducing a voided structure, in conventional dc magnetron sputtering is compensated for effectively by the addition of energy to the particles in rf-plasma-assisted sputtering.  相似文献   

13.
Aluminum and indium co-doped zinc oxide (AIZO) thin films were prepared by direct current (dc) magnetron sputtering on glass substrate in pure argon atmosphere. Three inches of zinc oxide ceramic with 0.5 wt.% of aluminum and indium doping was used as a target in static mode. The influence of sputtering conditions i.e. substrate-target distance, pressure and power on AIZO films was studied. The electrical resistivity and microstructure of thin films were investigated by the four point probe technique and the scanning electron microscope, respectively. The optical transmittance of AIZO films was measured by UV visible spectrophotometer in the wavelength of 300-1100 nm. Depending on the deposited conditions, highly transparent films up to 80% with low resistivities in the range of 2.6-7.9 × 10− 4 Ω cm were achieved at room temperature. Possible mechanism in the processing which, ultimately, determines the physical properties of AIZO films will be discussed.  相似文献   

14.
We have investigated the electrical, optical, structural, and annealing properties of indium zinc tin oxide (IZTO) films prepared by an unbalanced radio frequency (RF) magnetron sputtering at room temperature, in a pure Ar ambient environment. It was found that the electrical and optical properties of unbalanced RF sputter grown IZTO films at room temperature were influenced by RF power and working pressure. At optimized growth condition, we could obtain the IZTO film with the low resistivity of 3.77 × 10− 4 Ω cm, high transparency of ~ 87% and figure of merit value of 21.2 × 10− 3Ω− 1, without the post annealing process, even though it was completely an amorphous structure due to low substrate temperature. In addition, the field emission scanning electron microscope analysis results showed that all IZTO films are amorphous structures with very smooth surfaces regardless of the RF power and working pressure. However, the rapid thermal annealing process above the temperature of 400 °C lead to an abrupt increase in resistivity and sheet resistance due to the transition of film structure from amorphous to crystalline, which was confirmed by X-ray diffraction examination.  相似文献   

15.
用射频磁控溅射法在不同衬底上制备出了MgxZn1-xO薄膜。X射线衍射(XRD)和原子力显微镜(AFM)研究结果表明,薄膜为六角纤锌矿结构,具有(002)方向择优取向;随氧分压增加,(002)衍射峰的角度变大,表征薄膜表面粗糙程度的方均根粗糙度减小。室温光致发光谱中有多个紫外及可见光致发光峰,其中344nm发光峰应来源于近带边发射。室温透射谱表明薄膜在可见光区具有极高的透过率,薄膜的吸收边位于340nm附近,进而估算出Mg、Zn1-xO薄膜的带隙宽度为3.59eV,与光致发光结果一致。  相似文献   

16.
Indium zinc oxide films were grown from targets with two different In atomic concentration [In/(In + Zn)] of 40% and 80% by the pulsed laser deposition technique on glass substrates from room temperature up to 100 °C. X-ray diffraction and reflectometry investigations showed that films were amorphous and dense. Thin films (thickness < 100 nm) exhibited higher optical transmittance and resistivities than thick films (thickness > 1000 nm), probably caused by a significant decrease of oxygen vacancies due to atmosphere exposure. Films deposited from the In rich target under an oxygen pressure of 1 Pa exhibited optical transmittance higher than 85%, resistivities around 5- 7 × 10− 4 Ω cm and mobilities in the 47-54 cm2/V s range.  相似文献   

17.
Al-doped zinc oxide (AZO) thin films were deposited onto flexible polyethylene terephthalate substrates, using the radio frequency (RF) magnetron sputtering process, with an AZO ceramic target (The Al2O3 content was about 2 wt.%). The effects of the argon sputtering pressure (in the range from 0.66 to 2.0 Pa), thickness of the Al buffer layer (thickness of 2, 5, and 10 nm) and annealing in a vacuum (6.6 × 10− 4 Pa), for 30 min at 120 °C, on the morphology and optoelectronic performances of AZO films were investigated. The resistivity was 9.22 × 10− 3 Ω cm, carrier concentration was 4.64 × 1021 cm− 3, Hall mobility was 2.68 cm2/V s and visible range transmittance was about 80%, at an argon sputtering pressure of 2.0 Pa and an RF power of 100 W. Using an Al buffer decreases the resistivity and optical transmittance of the AZO films. The crystalline and microstructure characteristics of the AZO films are improved by annealing.  相似文献   

18.
Thin ZrNxOy films are deposited on Si (100) substrates by radio frequency (RF) reactive magnetron sputtering of a zirconium target in an argon-oxygen-nitrogen mixture. The ΦN2/Φ(Ar + N2 + O2) ratio was varied in the range 2.5%-100% while the oxygen flux was kept constant. The films were characterized by combining several techniques: X-ray photoelectron spectroscopy, X-ray diffraction and Secondary Ion Mass Spectroscopy. The relationship between structural and compositional properties and the sputtering parameters was investigated. Increasing nitrogen partial pressure in the gas mixture, a chemical and structural evolution happens. At lowest nitrogen flux, ZrN cubic phase is formed with a very small amount of amorphous zirconium oxynitride. At highest nitrogen flux, only crystalline ZrON phases were found. For the films obtained between these two extremes, a co-presence of ZrN and ZrON can be detected. In particular, chemical analysis revealed the co-presence of ZrO2, ZrN, ZrON and N-rich zirconium nitride which is correlated with the ΦN2/Φ(Ar + N2 + O2) values. A zirconium nitride crystal structure with metal vacancies model has been considered in order to explain the different chemical environment detected by X-ray photoelectron spectroscopy measurements. The metal vacancies are a consequence of the deposition rate decreasing due to the target poisoning. It's evident that the growth process is strongly influenced by the zirconium atoms flux. This parameter can explain the structural evolution.  相似文献   

19.
石英晶体表面溅射成膜及频率偏离特性的研究   总被引:2,自引:0,他引:2  
赵龙章 《真空》2003,(1):25-28
提出了用磁控溅射法在石英晶体表面形成TiN薄膜,研究了TiN薄膜的性能及其频率偏离特性。对生物检疫和液体粘度等动态测定有广阔的应用前景。  相似文献   

20.
HfO2 and HfSiO films were prepared on Si substrates by using radio frequency magnetron sputtering (RFMS). Compositional, structural and electronic properties of the two films were investigated completely. X-ray photoelectron spectroscopy (XPS) spectra showed that the atom ratio of Hf to O was about 1:2 in the HfO2 film and the chemical composition of the HfSiO film was Hf37Si7O56. Grazing incidence X-ray diffraction (GI-XRD) patterns indicated crystallization in the HfO2 film after 400 °C annealing, but there is no detectable crystallization in the HfSiO film after 800 °C annealing. C-V measurements indicated that the dielectric constants for the HfO2 and HfSiO film were 20.3 and 17.3, respectively. The fixed charge densities were found to be 6.0 × 1012 cm−2 for the HfO2 film and 3.7 × 1012 cm−2 for the HfSiO film. I-V characteristics showed that the average leakage current densities were 2.4 μA/cm2 for the HfO2 film and 0.2 μA/cm2 for the HfSiO film at the gate bias of 1 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号