首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin film fabrication of crystalline 12CaO·7Al2O3 (C12A7) with zeolitic structure was examined, and their electrical and optical properties were measured. Polycrystalline thin films were prepared by post-annealing of amorphous films in oxygen atmosphere at temperatures above 800 °C. Choice of substrates was crucial for obtaining single-phase thin films. Although various oxide substrates (single crystals of Al2O3, Y-stabilized ZrO2, MgO and silica glass) were examined, single-phase films were obtained only for MgO substrates and the other substrates reacted with the CaO component in the films during post-annealing. The optical band gap of C12A7 was evaluated to be 5.9 eV. Hydride ions were incorporated into the film by a thermal treatment in a hydrogen atmosphere at 1200 °C. The resulting transparent thin films were converted into transparent persistent electronic conductors exhibiting an electrical conductivity 6.2×10−1 S cm−1 at 300 K by ultraviolet light illumination. This is the first example of transparent conductive thin film in which conductive areas can be patterned directly by light.  相似文献   

2.
This paper shows the ex situ thermal treatment effects of the ZrO2 thin films obtained by TVA (thermionic vacuum arc) technique on the optical properties (e.g., transmittance, refractive index and band-gap energy) of ZrO2 thin films. The crystal structure, surface and optical properties were investigated for ZrO2 thin films deposited on glass substrates by thermionic vacuum arc (TVA) method. The thermal treatment effect on the optical properties of the thin films was determined. The XRD analysis showed that the deposited ZrO2 thin films have baddeleyite (monoclinic) and zirconium (hexagonal) structures. The thicknesses and refractive index were determined by interferometric measurements. The thin films were thermal treated at different temperatures (350 °C, 450 °C and 550 °C), and the analysis showed that the optical properties of ZrO2 deposited thin films were improved by thermal treatment at 450 °C.  相似文献   

3.
Microstructure-Property relationships in thin film ITO   总被引:1,自引:0,他引:1  
Polycrystalline tin-doped indium oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) with an ITO (In2O3-10 wt.% SnO2) target and deposited on borosilicate glass substrates. By changing independently the deposition temperature and the oxygen pressure, a variety of microstructures were deposited. These different microstructures were mainly investigated not only by transmission electron microscopy (TEM) with cross-section and plan-view electron micrographs, but also by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction. Composition changes in ITO thin films grown under different deposition conditions were characterized by energy dispersive X-ray spectroscopy (EDX). The optical and electrical properties were studied respectively by UV-visible spectrophotometry and a four-point probe. The best compromise in terms of high transmittance (T) in the visible range and low resistivity (ρ) was obtained for films deposited between 0.66 and 2 Pa oxygen pressure (PO2) at 200 °C substrate temperature (Ts). The influence of PO2 and Ts on the microstructure and ITO film properties is discussed.  相似文献   

4.
Aluminum-doped zinc oxide films (ZnO:Al) were deposited on Si wafers and glass substrates by dc magnetron sputtering from a ZnO target mixed with 2 wt% Al2O3 for photovoltaic films. The effect of base pressure, additional oxygen, and substrate temperature were studied in detail. By dc magnetron sputtering at room temperature, the resistivity and the average transmittance in visible range was 2.3 × 10−3 Ω cm and 77.3%, respectively. And these were improved up to 3.3 × 10−4 Ω cm and 86% at the substrate temperature of 400 °C by high deposition rate and low impurity ambient. The mobility and the carrier concentration were improved by the increased preferred orientation of (002) plane and grain size of film with increasing deposition temperature. This advanced AZO film with good resistivity and transmittance can be expected as the front TCO of thin film solar cells.  相似文献   

5.
We report on preparation and properties of anatase Nb-doped TiO2 transparent conducting oxide films on glass and polyimide substrates. Amorphous Ti0.96Nb0.04O2 films were deposited at room temperature by using sputtering, and were then crystallized through annealing under reducing atmosphere. Use of a seed layer substantially improved the crystallinity and resistivity (ρ) of the films. We attained ρ = 9.2 × 10− 4 Ω cm and transmittance of ~ 70% in the visible region on glass by annealing at 300 °C in vacuum. The minimum ρ of 7.0 × 10− 4 Ω cm was obtained by 400 °C annealing in pure H2.  相似文献   

6.
Al-doped ZnO (AZO) thin films have been prepared on glass substrates by pulsed laser deposition. The structural, optical, and electrical properties were strongly dependent on the growth temperatures. The lowest resistivity of 4.5 × 10−4 Ωcm was obtained at an optimized temperature of 350 °C. The AZO films deposited at 350 °C also had the high optical transmittance above 87% in the visible range and the low transmittance (<15% at 1500 nm) and high reflectance (∼50% at 2000 nm) in the near-IR region. The good IR-reflective properties of ZnO:Al films show that they are promising for near-IR reflecting mirrors and heat reflectors.  相似文献   

7.
We have grown indium oxide thin films on silicon substrates at low temperature by metal organic chemical vapor deposition. Polycrystalline film growth could only be obtained at temperatures below 400 °C. Above 400 °C, metallic indium deposition dominated. We have investigated the effect of substrate temperature and reactor pressure on the film growth and structural properties in the range of 250-350 °C and 5 ? 103-4 ? 104 Pa. The film grown at 300 °C exhibited a resistivity of about 3.6 × 10− 3 Ω cm and a maximal optical transmittance of more than 95% in the visible range. The film showed an optical band gap of about 3.6 eV.  相似文献   

8.
Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 × 10− 4 Ω cm on glass while that on the polyimide was 1.9 × 10− 4 Ω cm. Substrate temperatures above 100 °C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells.  相似文献   

9.
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C.  相似文献   

10.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

11.
A systematic study of the influence of alumina (Al2O3) doping on the optical, electrical, and structural characteristics of sputtered ZnO thin films is reported in this study. The ZnO thin films were prepared on 1737F Corning glass substrates by R.F. magnetron sputtering from a ZnO target mixed with Al2O3 of 0-4 wt.%. X-ray diffraction (XRD) analysis demonstrates that the ZnO thin films with Al2O3 of 0-4 wt.% have a highly (002) preferred orientation with only one intense diffraction peak with a full width at half maximum (FWHM) less than 0.5°. The electrical properties of the Al2O3-doped ZnO thin films appear to be strongly dependent on the Al2O3 concentration. The resistivity of the films decreases from 74 Ω·cm to 2.2 × 10− 3 Ω·cm as the Al2O3 content increases from 0 to 4 wt.%. The optical transmittance of the Al2O3-doped ZnO thin films is studied as a function of wavelength in the range 200-800 nm. It exhibits high transparency in the visible-NIR wavelength region with some interference fringes and sharp ultraviolet absorption edges. The optical bandgap of the Al2O3-doped ZnO thin films show a short-wavelength shift with increasing of Al2O3 content.  相似文献   

12.
Electrical and optical properties of polycrystalline films of W-doped indium oxide (IWO) were investigated. These films were deposited on glass substrate at 300 °C by d.c. magnetron sputtering using ceramic targets. The W-doping in the sputter-deposited indium oxide film effectively increased the carrier density and the mobility and decreased the resistivity. A minimum resistivity of 1.8 × 10− 4 Ω cm was obtained at 3.3 at.% W-doping using the In2O3 ceramic targets containing 7.0 wt.% WO3. The 2.2 at.% W-doped films obtained from the targets containing 5.0 wt.% WO3, showed the high Hall mobility of 73 cm2 V− 1 s− 1 and relatively low carrier density of 2.9 × 1020 cm− 3. Such properties resulted in novel characteristics of both low resistivity (3.0 × 10− 4 Ω cm) and high transmittance in the near-infrared region.  相似文献   

13.
The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage.Experimental results show that the IMO films consist of a cubic bixbyite B-In2O3 single phase with its crystal preferred orientation alone B(222). Mo6+ ions are therefore considered to partially substitute In3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 × 10− 4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate.  相似文献   

14.
In2O3 thin films were prepared by the thermal oxidation of amorphous InSe films in air atmosphere. The structure, morphology and composition of the thermal annealed products were characterized by X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive spectroscopy, respectively. The XRD patterns indicate that the as-deposited InSe films were amorphous and they fully transformed into polycrystalline In2O3 films with a cubic crystal structure in the preferential (222) orientation at a temperature around 600 °C. The optical energy gap of 3.66 eV was determined at room temperature by transmittance and reflectance measurements using UV-vis-NIR spectroscopy. A preliminary characterization shows that these films have a promising response towards NO2 gas at a working temperature around 180 °C.  相似文献   

15.
Sn-doped In2O3 (ITO) films were deposited on heated (200 °C) fused silica glass substrates by reactive DC sputtering with mid-frequency pulsing (50 kHz) and a plasma control unit combined with a feedback system of the optical emission intensity for the atomic O* line at 777 nm. A planar In-Sn alloy target was connected to the switching unit, which was operated in the unipolar pulse mode. The power density on the target was maintained at 4.4 W cm− 2 during deposition. The feedback system precisely controlled the oxidation of the target surface in “the transition region.” The ITO film with lowest resistivity (3.1 × 10− 4 Ω cm) was obtained with a deposition rate of 310 nm min− 1 and transmittance in the visible region of approximately 80%. The deposition rate was about 6 times higher than that of ITO films deposited by conventional sputtering using an oxide target.  相似文献   

16.
To obtain TCO films for wavelengths shorter than the visible range, Ga2O3 was added to the In2O3-ZnO system as an impurity. Using pulsed laser deposition (PLD), two kinds of targets, InGaZnO4 and InGaZn3O6, were deposited. Although the In-Ga-Zn-O films obtained deviated from the stoichiometry of InGaZnO4, they were amorphous at a substrate temperature below 250 °C. We obtained the lowest resistivity of 2.77 × 10−3 Ω cm within the present experiment at a carrier concentration of 1.38 × 1020 cm−3 and a Hall mobility of 16.6 cm2/Vs. The optical band gap energy shifted to higher energies and the transmittance at the blue range was improved dramatically as compared with similar amorphous IZO films.  相似文献   

17.
New transparent conductive films, fluorine doped tin oxide (FTO) films coated on indium-tin-oxide (ITO) films, were developed. These transparent conductive films were prepared by the spray pyrolysis deposition method at a substrate temperature of 350 °C in ITO and 400 °C in FTO. For ITO deposition, an ethanol solution of indium(III) chloride, InCl3·4H2O, and tin(II) chloride, SnCl2·2H2O [Sn/(In+Sn), 5 at.%] was sprayed on a Corning #7059 glass substrate (100×100×1.1 mm3). After the deposition, FTO films were consecutively deposited for protecting oxidation of ITO films. FTO deposition was carried out by an ethanol solution of tin(IV) chloride, SnCl4·5H2O within the saturated water solution of NH4F. These new transparent conductive films achieved the lowest resistivity of 1.4×10−4 Ω cm and the optical transmittance of more than 80% in the visible range of the spectrum. The electrical resistance of these new transparent conductive films increased by less than 10% even when exposed to high temperatures of 300-600 °C for 1 h in the air.  相似文献   

18.
ITO thin films deposited by advanced pulsed laser deposition   总被引:1,自引:0,他引:1  
Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 °C), pressure (1-6 × 10− 2 Torr), laser fluence (1-4 J/cm2) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 °C on a large area (5 × 5 cm2). The films have electrical resistivity of 8 × 10− 4 Ω cm at RT, 5 × 10− 4 Ω cm at 180 °C and an optical transmission in the visible range, around 89%.  相似文献   

19.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

20.
This work deals with high efficient optical switching properties at 68 °C of thermochromic vanadium dioxide (VO2) thin films deposited on amorphous silica substrates. VO2 thin films were deposited by radio frequency reactive sputtering process. Conditions of deposition were optimized making use of parameters such as film thickness, gas ratio and substrate temperature. Process was optimized adjusting the distance between target and substrate, and dimensions of target and substrates, to obtain a good uniformity and reproducibility of the layers. X-Ray diffraction patterns and scanning electron microscopy convincingly illustrated that VO2 thin films could grow on amorphous silica substrates with a specific preferential crystal orientation: the [001]M crystallographic direction of oxygen octahedral chains is parallel to the substrate plane and corresponds with vanadium-vanadium links (insulating state) or with a maximum of electron delocalization (metal state). Optical switching properties in the mid-infrared range are discussed: transmittance, reflectance and emissivity values are strongly modified at the thermochromic transition temperature (Tc=68 °C). A maximum of optical transmittance contrast is observed for a thickness of 120-nm, then interpreted in terms of absorption law. Using a specific software, the n and k optical indices are determined and used to simulate the variation of transmittance vs. film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号