首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vacuum》2011,85(12):1444-1447
A barrier structure consisting of SiOx and SiNx films was deposited on the polymer substrate at 80 °C via plasma-enhanced chemical vapor deposition (PECVD). However, the low radius of curvature (Rc) of the barrier-coated substrate may cause the inconvenience of the following fabrication processes. By depositing a 150 nm-SiNx film, the Rc of the barrier-coated polycarbonate (PC) substrate can increase from 80 to 115 mm without inducing any cracks in the barrier structure. Furthermore, the thermal stress of the barrier structure can be adjusted via extending the PECVD process duration in the chamber and replacing PC by the polyethersulone (PES) substrate. The Rc can increase to ∼356 mm by depositing the 150 nm-SiNx film on the other side of the PES substrate. Finally, the calcium test result of the barrier films/PES/SiNx sample was calculated to be around 3.05 × 10−6 g/m2/day, representing that the barrier structure did not fail after modification.  相似文献   

2.
Y. Xin  Y. Shi  Z.X. Huang  R. Zhang 《Thin solid films》2008,516(6):1130-1136
In this paper, hydrogenated amorphous silicon nitride (a-SiNx:H) films have been deposited using an electron cyclotron resonance chemical vapor deposition system. The effect of NH3 flow rate R on the deposition rate, structure and luminescence were studied using various techniques such as optical emission spectroscopy, Fourier Transform Infrared absorption (FTIR), X-ray photoelectron spectroscopy (XPS) and fluoro-spectroscopy, respectively. Optical emission behavior of SiH4 + NH3 plasma shows that atomic Si radical concentration determines the film deposition rate. Structural transition of a-SiNx film from Si-rich one to near-stoichiometric/N-rich one with R was revealed by FTIR and the two phase separation of a-Si and a-Si3N4 was also convinced in Si-rich SiNx films by XPS. Either photo- or electroluminescence for all the SiNx films with R > 3 sccm shows a strong light emission in visible light wavelength range. As R < 6 sccm, recombination of electrons and holes in a-Si quantum dots is the main mechanism of photo/electroluminescence for Si-rich SiNx films, however, for photoluminescence, gap states' luminescence is also in competition; as R > 6 sccm, light emission of the SiNx film originates from defect states in its band gap.  相似文献   

3.
Silicon nitride (SiNx) is a material with many applications and can be deposited with various deposition techniques. Series of SiNx films were deposited with HWCVD, RF PECVD, MW PECVD and LF PECVD. The atomic densities are quantified using RBS and ERD. The influence of the atomic densities on the Si-N and Si-Si bond structure is studied. The density of N-N bonds is found to be negligible. New Si-N FTIR proportionality factors are determined which increase with increasing N/Si ratio from 1.2 · 1019 cm− 1 for Si rich films (N/Si = 0.2) to 2.4 · 1019 cm− 1 for N rich films (N/Si = 1.5). The peak position of the Si-H stretching mode in the FTIR spectrum is discussed using the chemical induction model. It is shown that especially for Si-rich films the hydrogen content affects the Si-H peak position. The influence of the composition on the refractive index of the films is discussed on the basis of the Lorentz-Lorenz equation and the Kramers-Kronig relation. The decreasing refractive index with increasing N/Si ratio is primarily caused by an increase of the band gap.  相似文献   

4.
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin films deposited both on a bare Si substrate and on a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain moduli and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 ± 19 GPa and 178 ± 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 ± 26 GPa and 194 ± 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 ± 0.33 GPa and 3.08 ± 0.79 GPa for the bare Si substrate and the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced on the bare Si substrate, the volume integration gave a significantly better agreement between data and model, implying that the volume flaws are the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal.  相似文献   

5.
We have demonstrated that the surface recombination velocity can be lowered to as low as 1.3 cm/s for n-type c-Si wafers and to 9.0 cm/s for p-type wafers by using amorphous Si (a-Si) and Si nitride (SiNx) stacked films prepared by catalytic chemical vapor deposition (Cat-CVD). These values are much lower than those of c-Si wafers passivated by same stacked structures formed by low-damage remote plasma-enhanced CVD (PECVD). It is revealed that Cat-CVD a-Si insertion layers play an important role to improve interface quality, and also SiNx films are also essential for reducing the surface recombination velocity down to such low levels.  相似文献   

6.
The characteristics of an SiNx passivation layer grown by a specially designed inductively coupled plasma chemical vapor deposition (ICP-CVD) system with straight antennas for the top-emitting organic light emitting diodes (TOLEDs) are investigated. Using a high-density plasma on the order of ∼ 1011 electrons/cm3 formed by nine straight antennas connected in parallel, a high-density SiNx passivation layer was deposited on a transparent Mg-Ag cathode at a substrate temperature of 40 °C. Even at a low substrate temperature, single SiNx passivation layer prepared by ICP-CVD showed a low water vapor transmission rate of 5 × 10− 2 g/m2/day and a transparency of ∼ 85% respectively. In addition, current-voltage-luminescence results of the TOLED passivated by the SiNx layer indicated that the electrical and optical properties of the TOLED were not affected by the high-density plasma during the SiNx deposition process.  相似文献   

7.
Jinsu Yoo 《Thin solid films》2007,515(19):7611-7614
Hydrogenated films of silicon nitride (SiNx:H) is commonly used as an antireflection coating as well as passivation layer in crystalline silicon solar cell. SiNx:H films deposited at different conditions in Plasma Enhanced Chemical Vapor Deposition (PECVD) reactor were investigated by varying annealing condition in infrared (IR) heated belt furnace to find the optimized condition for the application in silicon solar cells. By varying the gases ratio (R = NH3/SiH4 + NH3) during deposition, the SiNx:H films of refractive indices 1.85-2.45 were obtained. Despite the poor deposition rate, the silicon wafer with SiNx:H film deposited at 450 °C showed the best effective minority carrier lifetime. The film deposited with the gases ratio of 0.57 shows the best peak of carrier lifetime at the annealing temperature of 800 °C. The single crystalline silicon solar cells fabricated in conventional industrial production line applying the optimized film deposition and annealing conditions on large area substrates (125 mm × 125 mm) were found to have the conversion efficiencies as high as 17.05 %. Low cost and high efficiency single crystalline silicon solar cells fabrication sequence employed in this study has also been reported in this paper.  相似文献   

8.
A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 µm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a roll-to-roll DC magnetron reactive sputtering method. The water vapor transmission rate of the SiOx film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.5 cc/m2 day atm at 40 °C and 90% RH. As the transparent conductive thin film, amorphous indium zinc oxide was deposited on the SiOx by sputtering. The transmittance was 87% and the resistivity was 3.5 × 10− 4 ohm cm.  相似文献   

9.
Wanyu Ding  Jun Xu  Xinlu Deng 《Thin solid films》2010,518(8):2077-5323
Hydrogen-free amorphous silicon nitride (SiNx) films were deposited at room temperature by microwave electron cyclotron resonance plasma-enhanced unbalance magnetron sputtering. Varying the N2 flow rate, SiNx films with different properties were obtained. Characterization by Fourier-transform infrared spectrometry revealed the presence of Si-N and Si-O bonds in the films. Growth rates from 1.0 to 4.8 nm/min were determined by surface profiler. Optical emission spectroscopy showed the N element in plasma mainly existed as N+ species and N2+ species with 2 and 20 sccm N2 flow rate, respectively. With these results, the chemical composition and the mechanical properties of SiNx films strongly depended on the state of N element in plasma, which in turn was controlled by N2 flow rate. Finally, the film deposited with 2 sccm N2 flow rate showed no visible marks after immersed in etchant [6.7% Ce(NH4)2(NO3)6 and 93.3% H2O by weight] for 22 h and wear test for 20 min, respectively.  相似文献   

10.
S.H. Tsai 《Thin solid films》2009,518(5):1480-1576
Multilayered CrAlN and SiNx films were deposited periodically by radio frequency reactive magnetron sputtering. In the CrAlN/SiNx multilayered coatings, the thickness of CrAlN layer was fixed at 4 nm, while that of SiNx layer was adjusted from 4 nm to 0.3 nm. The dependence of the SiNx layer thickness on the preferred orientation, crystalline behavior and mechanical properties of multilayered coatings were discussed with the aid of XRD patterns and HRTEM. It was demonstrated that amorphous SiNx layer transformed to a crystallized one when the thickness decreased from 4 nm to 0.3 nm. The crystalline SiNx layer grew epitaxially, formed the coherent interface with the CrAlN layer, and the columnar structure was exhibited. The critical layer thickness for the transition from amorphous SiNx to a crystallized one was found to be around 0.4 nm, and maximum hardness of 33 GPa was revealed.  相似文献   

11.
Davinder Kaur 《低温学》2005,45(6):455-462
In the present study we report the measurements of microwave surface resistance (Rs) of YBCO thin films on LaAlO3 substrate as a function of temperature, thickness and magnetic field by microstrip resonator technique. The Tc(R = 0) of the films is 90 K and Jc > 106 A/cm2 at 77 K. The microwave surface resistance has been measured for films of various thicknesses. The value of Rs has been found to be initially decreased with increasing film thickness due to increase in number of defects. A minimum microwave surface resistance has been obtained for film thickness of about 300 nm. The increase of Rs with film thickness above 300 nm is possibly due to degradation of the film microstructure as observed with Atomic Force Microscopy. Temperature dependence of surface resistance has been studied for best quality films. The field induced variations of surface resistance are also investigated by applying dc magnetic field perpendicular to stripline structure and surface of the film. A general linear and square field dependence of Rs at low and high value of fields has been observed with critical field value of 0.4 T which confirms the microwave dissipation induced by flux flow in these resonators at 10 GHz frequency. The hysteresis of Rs in dc field observed for field value above critical field shows the higher value of surface resistance in decreasing field than in increasing field which is in agreement with one state critical model and is a characteristic of homogeneous superconductors.  相似文献   

12.
Organosilicon film and SiOx-like film are deposited on titanium alloy (Ti6Al4V) surfaces by atmospheric pressure (~ 105 Pa) dielectric barrier discharge to improve its corrosion resistance in Hanks solution. Hexamethyldisiloxane (HMDSO) is used to be the chemical precursor. The organosilicon film deposited in Ar/HMDSO system has high growth rate (75 nm/min) and low surface roughness (3 nm), while the SiOx-like film deposited in Ar/O2/HMDSO system has lower growth rate (35 nm/min) and slightly higher surface roughness (9 nm). The potentiodynamic polarization tests show that both the two siloxane films coated Ti6Al4V samples have more positive corrosion potential and one order of magnitude lower corrosion current density than the substrate, indicating the corrosion resistance of Ti6Al4V can be improved by depositing siloxane film on its surface. In particular, as the surface is more compact and cross-linked, the SiOx-like film has better corrosion resistance than the organosilicon film.  相似文献   

13.
Plastic deformation of TiN5 nm/SiN0.5 nm multilayers by nanoindentation was investigated by transmission electron microscopy in order to identify deformation mechanisms involved in film failure resulting from severe plastic deformation. The TiN layers exhibited a crystalline fcc structure with a [002] preferential orientation; further crystal growth was interrupted by the amorphous SiNx layers. After severe plastic deformation collective vertical displacement of slabs of several TiN/SiNx-bilayers, which resulted from shear sliding at TiN/TiN grain boundaries, was observed. They are, together with horizontal fractures along the SiNx layers, vertical cracks under the indenter tip following the TiN grain boundaries and delamination from the substrate, the predominant failure mechanisms of these coatings. The deformation behaviour of these films provides an experimental support for the absence of dislocation activity in grains of 5 nm size.  相似文献   

14.
Amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) with a coplanar homojunction structure are demonstrated. The coplanar source and drain regions made of a-IGZO were formed by depositing a hydrogenated silicon nitride (SiNX:H) layer onto the a-IGZO layer. The a-IGZO regions on which the SiNX:H layer was directly deposited showed the low resistivity of 4.7 × 10−3  Ω cm and degenerated conduction. The fabricated TFT showed excellent transfer and output characteristics with a field-effect mobility of 11 cm2 V− 1 s− 1, a subthreshold swing of 0.17 V decade− 1, and an on-to-off current ratio larger than 1 × 109. The width-normalized source-to-drain resistance (RsdW) calculated using a channel resistance method was 51 Ω cm. This TFT also showed good stability over environment change and under electrical stress.  相似文献   

15.
Nobuaki Nagao  Kenji Iijima 《Vacuum》2009,83(8):1132-1137
The c-axis-oriented epitaxial thin films of Mn-doped Pb1−xLaxTi1−x/4O3 (PLT) on (001) Pt/MgO substrates were prepared by rf-magnetron sputtering. To investigate the effect of the doped ion, 0-1.7 mol% MnO2 added to the PLT target powder. The temperature dependence of the relative dielectric constant ?r measurements and modified Curie-Weiss plots suggested that the increasing of diffuseness n was induced by high-La substitution and the diffuseness n of PLT thin films decreased by the addition of Mn, considerably. Inner stress and thermodynamic analysis were carried out and the results propose that the increasing of γ with Mn doping caused by increasing the misfit strain of the c-axis-oriented epitaxial PLT thin films and substrate. As a result, giant pyroelectric coefficient (γ = 15.8 × 10−8 C/cm2 K) of Mn-doped epitaxial PLT thin film was achieved.  相似文献   

16.
An oxide multilayer structure—consisting of an indium zinc oxide (IZO) conductive layer, a silicon oxide (SiOx, x = 1.8) water vapor permeation barrier, and an aluminum oxide (Al2O3) interlayer—coated on polyethylene terephthalate (PET) is proposed as a transparent flexible substrate for display and photovoltaic applications. Vital properties of the multilayer, such as the low water vapor impermeability of the SiOx barrier and the high conductance of the IZO film, degraded considerably because of the crack formation in bend geometries, attributed to the large difference between elastic properties of the oxide films and polymers. In order to suppress the crack formation, a 10-nm-thick Al2O3 interlayer was sputtered on Ar ion-beam treated PET surfaces prior to a SiOx plasma-enhanced chemical vapor deposition (PECVD) process. Changes in the conductance and water vapor impermeability were investigated at different bending radii and bending cycles. It was found that the increases in resistance and water vapor transmission rate (WVTR) were significantly suppressed by the ion-beam PET pretreatment and by the sputtered Al2O3 interlayer. The resistance and WVTR of IZO/SiOx/Al2O3/PET systems could be kept low and invariable even in severely bent states by choosing the SiOx thickness properly. The IZO (135 nm)/SiOx (90 nm)/Al2O3 (10 nm)/PET system maintained a resistance of 3.2 × 10− 4 Ω cm and a WVTR of < 5 × 10− 3 g m2 d− 1 after 1000 bending cycles at a bending radius of 35 mm.  相似文献   

17.
Transparent conducting oxide (TCO) films in the ZnO-In2O3 system were prepared by a pulsed laser deposition method. A target that consists of the mixture of ZnO and In2O3 powders was used. Influences of the target composition x (x = [Zn]/([Zn] + [In])) and heater temperature on structural, electrical and optical properties of the TCO films were examined. Introduction of oxygen gas into the chamber during the deposition was necessary for improvement in the transparency of the deposited films. The amorphous phase was observed for a wide range of x = 0.20-0.60 at 110 °C. Minimum resistivity was 2.65 × 10−4 Ω cm at x = 0.20. The films that showed the minimum resistivity had an amorphous structure and the composition shifted toward larger x, as the substrate temperature increased. The films were enriched in indium compared to the target composition and the cationic In/Zn ratio increased as the substrate temperature was increased.  相似文献   

18.
The Mn-doped ZnO (Zn1 − xMnxO) thin films with manganese compositions in the range of 0-8 at.% were deposited by radio-frequency (RF) magnetron sputtering on quartz glass substrates at room temperature (RT). The influence of Mn concentration on the structural, electrical and optical properties of Zn1 − xMnxO films has been investigated. X-ray diffraction (XRD) measurements reveal that all the films are single phase and have wurtzite structure with (002) c-axis orientation. The chemical states of Mn have been identified as the divalent state of Mn2+ ions in ZnO lattice. As the content of Mn increases, the c-lattice constant and the optical band gap of the films increase while the crystalline quality deteriorates gradually. Hall-effect measurements reveal that all the films are n-type and the conductivity of the films has a severe degradation with Mn content. It is also found that the intensity of RT photoluminescence spectra (PL) is suppressed and saturates with Mn doping.  相似文献   

19.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

20.
CNx–TiNx composite films were prepared on high-speed steel (HSS) substrate by pulsed KrF excimer laser co-deposition process with graphite/Ti combined targets and a substrate temperature of 200 °C. The composition, morphology and microstructure of the films were characterized by energy dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The adhesion and tribological performance of the films were investigated using a conventional scratch tester and a ball-on-disk tribometer, respectively. In the graphite/Ti range of 0.5–2.0 of the target, TiNx, a-CNx and metallic Ti phase were found in the composite films. The TiNx disappeared in the films at a high graphite/Ti ratio of the target. With increasing the graphite/Ti ratio of the target, the adhesion to substrate of the composite films deteriorated from 46 N to 26 N, and the friction coefficient decreased from 0.23 to 0.17. The composite film deposited at the graphite/Ti ratio of 1.0 showed a low friction coefficient, good adhesion and wear rate of 3.2 × 10−7 mm3/Nm in humid air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号