首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tae Ho Jun 《Materials Letters》2010,64(21):2287-2289
Cr-doped TiO2 thin films with different band gaps were prepared. Higher Cr doping was beneficial to the formation of the rutile-TiO2 phase over the anatase-TiO2 phase. A 4.8% Cr-doped thin film indicated a band gap of 2.95 eV, which was lower than the band gap of the rutile-TiO2. Cr doping was accompanied by the formation of not only the rutile-TiO2 phase but also the Cr2O3 phase, lead to the degradation of the hydrophilicity. The TiO2 thin films with the mixed phase were not desirable to improve the hydrophilicity.  相似文献   

2.
Anatase nano-TiO2 thin films were fabricated by reactive magnetron sputtering metal Ti target followed by thermal annealing in air at 450 °C for 2 hrs. The crystalline structure of the sample films were characterized by X-ray diffraction (XRD) and the hydrophilicity was characterized with the diameters of 1 μl water drop. The films were irradiated by oxygen plasmas and the effects of the radio frequency (rf) power, the gas pressure and the irradiation time of the oxygen plasmas on the hydrophilicity of the TiO2 thin films were investigated. Hydrophilicity can be induced by oxygen plasmas and further more the hydrophilicity shows high stability whenever under the natural light or in dark.  相似文献   

3.
Fanming Meng  Xueping Song  Zhaoqi Sun 《Vacuum》2009,83(9):1147-10720
Nano-TiO2 thin films were deposited on silicon and glass substrates by radio-frequency (RF) magnetron sputtering using TiO2 ceramic target and characterized by X-ray diffractometer, X-ray photoelectron spectrometer, atomic force microscope, and ultraviolet-visible spectrophotometer. Photocatalytic activity was evaluated by light induced degradation of 5 ppm methyl orange solution using a high pressure mercury lamp as lamp-house. It was found that the film as deposited is polymorph, with energy gap of 3.02 eV, and can absorb visible light. The film was repeatedly used for six times in degradation of 5 ppm methyl orange, and the degradation rates of methyl orange solution are 36.566%, 33.112%, 32.824%, 32.248%, 30.521% and 28.794%, respectively. After ultrasonic treatment in de-ionized water for ten minutes, the degradation rate of methyl orange solution resumes to 33.975%.  相似文献   

4.
In this work, we investigated the etching characteristics of TiO2 thin films and the selectivity of TiO2 to SiO2 in a BCl3/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 84.68 nm/min was obtained for TiO2 thin films at a gas mixture ratio of BCl3/Ar (25:75%). In addition, etch rates were measured as a function of etching parameters, such as the RF power, DC-bias voltage and process pressure. Using the X-ray photoelectron spectroscopy analysis the accumulation of chemical reaction on the etched surface was investigated. Based on these data, the ion-assisted physical sputtering was proposed as the main etch mechanism for the BCl3-containing plasmas.  相似文献   

5.
The investigation of Al2O3 etch characteristics in the BCl3/Ar inductively coupled plasma was carried out in terms of effects of input process parameters (gas pressure, input power, bias power) on etch rate and etch selectivity over poly-Si and photoresist. It was found that, with the changes in gas pressure and input power, the Al2O3 etch rate follows the behavior of ion current density while the process rate is noticeably contributed by the chemical etch pathway. The influence of input power on the etch threshold may be connected with the concurrence of chemical and physical etch pathways in ion-assisted chemical reaction.  相似文献   

6.
Do Young Lee 《Thin solid films》2009,517(14):4047-4051
Inductively coupled plasma reactive ion etching of indium zinc oxide (IZO) thin films masked with a photoresist was performed using a Cl2/Ar gas. The etch rate of the IZO thin films increased as Cl2 gas was added to Ar gas, reaching a maximum at 60% Cl2 and decreasing thereafter. The degree of anisotropy in the etch profile improved with increasing coil rf power and dc-bias voltage. Changes in pressure had little effect on the etch profile. X-ray photoelectron spectroscopy confirmed the formation of InCl3 and ZnCl2 on the etched surface. The surface morphology of the films etched at high Cl2 concentrations was smoother than that of the films etched at low Cl2 concentrations. These results suggest that the dry etching of IZO thin films in a Cl2/Ar gas occurs according to a reactive ion etching mechanism involving ion sputtering and a surface reaction.  相似文献   

7.
Jong Min Jung  Eui Jung Kim 《Vacuum》2008,82(8):827-832
Au/TiO2 thin films with various Au doping contents were deposited on quartz substrates by radio frequency (RF) magnetron co-sputtering. The as-deposited Au/TiO2 films were characterized by energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), XRD, and UV-vis techniques. Au doping and UV treatment enhanced the photocatalytic efficiency of TiO2 thin films. The optimal RF power of the Au target and UV treatment time were 5 W and 1 h, respectively. The enhanced photoactivity of Au(5 W)/TiO2 thin films with UV treatment is found to result from the increased hydroxyl concentration.  相似文献   

8.
Dry etching of indium zinc oxide (IZO) thin films was performed using inductively coupled plasma reactive ion etching in a C2F6/Ar gas. The etch characteristics of IZO films were investigated as a function of gas concentration, coil rf power, dc-bias voltage to substrate, and gas pressure. As the C2F6 concentration was increased, the etch rate of the IZO films decreased and the degree of anisotropy in the etch profile also decreased. The etch profile was improved with increasing coil rf power and dc-bias voltage, and decreasing gas pressure. An X-ray photoelectron spectroscopy analysis confirmed the formation of InF3 and ZnF2 compounds on the etched surface due to the chemical reaction of IZO films with fluorine radicals. In addition, the film surfaces etched at different conditions were examined by atomic force microscopy. These results demonstrated that the etch mechanism of IZO thin films followed sputter etching with the assistance of chemical reaction.  相似文献   

9.
A sol-gel dip coating technique was used to fabricate TiO2/SnO2 nano composite thin films on soda-lime glass. The solutions of SnO2 and TiO2 were mixed with different molar ratios of SnO2:TiO2 as 0, 3, 4, 6, 8, 9, 10.5, 13, 15, 19.5, 25 and 28 mol.% then the films were prepared by dip coating of the glasses. The effects of SnO2 concentration, number of coating cycles and annealing temperature on the hydrophilicity of films were studied using contact angle measurement. The films were characterized by means of scanning electron microscopy, X-ray diffraction and atomic force microscopy measurements. The nano composite thin films fabricated with 8 mol.% of SnO2, four dip coating cycles and annealing temperature of 500 °C showed super-hydrophilicity.  相似文献   

10.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

11.
M.C. Liao  G.S. Chen 《Thin solid films》2010,518(24):7258-7262
A series of TiO2 thin films was deposited onto glass substrates without intentional heating or biasing by magnetron sputtering of a titanium target using Ar/O2 reactive mixtures over a broad range of total sputtering pressures from 0.12 Pa to 2.24 Pa. Each of the film types was deposited by the threshold poisoned mode at a specific given oxygen flow rate monitored in-situ by optical emission spectroscopy. Both the sputtering pressure and thermal annealing are the key factors for the TiO2 films to yield fast-response superhydrophilicity with a water contact angle of 5°. The mechanism of superhydrophilicity for the TiO2 films deposited by high-pressure sputtering will be discussed based on empirical studies of X-ray diffractometry, high-resolution scanning microscopy and atomic force spectroscopy.  相似文献   

12.
GaN etching damage by capacitively-coupled RF Ar plasma exposure is significantly dependent on gas pressure and exposure time. At a low gas pressure (10 mTorr), the N/Ga ratio decreases by the physical etching effect with increasing exposure time, while the GaN surface morphology is smooth. At a high gas pressure (50 mTorr), there are other effects such as UV radiation, by which the GaN surface morphology becomes rough as the exposure time increases from ∼ 60 min.  相似文献   

13.
A serial of crystalline titanium oxide ceramic films were deposited at low temperature using microwave electron cyclotron resonance (MW-ECR) magnetron sputtering with different O2/Ar ratios. The influences of O2/Ar ratio on the deposition rate, morphology, crystalline nature, optical adsorption property of the obtained titanium oxide thin films were investigated by means of X-ray diffraction (XRD), atomic force microscopy (AFM) and UV-Vis spectra. Therefore, the optimum O2/Ar ratio for deposition of anatase TiO2 thin films on unheated glass substrate was realized in a MW-ECR magnetron sputtering process. The as-deposited anatase TiO2 films were transparent and were antireflective in the visible region.  相似文献   

14.
An inductively coupled plasma reactive ion etching of IrMn magnetic thin films patterned with Ti hard mask was studied in a CH3OH/Ar gas mix. As the CH3OH concentration increased, the etch rates of IrMn thin films and Ti hard mask decreased, while the etch profiles improved with high degree of anisotropy. The effects of coil rf power, dc-bias voltage to substrate and gas pressure on the etch characteristics were investigated. The etch rate increased and the etch profile improved with increasing coil rf power, dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed that the chemical reaction between IrMn films and CH3OH gas occurred, leading to the clean and good etch profile with high degree of anisotropy of 90°.  相似文献   

15.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

16.
Inductively coupled plasma reactive ion etching of titanium thin films patterned with a photoresist using Cl2/Ar gas was examined. The etch rates of the titanium thin films increased with increasing the Cl2 concentration but the etch profiles varied. In addition, the effects of the coil rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were investigated. The etch rate increased with increasing coil rf power, dc-bias voltage and gas pressure. The degree of anisotropy in the etched titanium films improved with increasing coil rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed the formation of titanium compounds during etching, indicating that Ti films etching proceeds by a reactive ion etching mechanism.  相似文献   

17.
K. Zakrzewska 《Vacuum》2004,74(2):335-338
Two classes of thin film gas sensors have been studied: TiO2 doped with Cr or Nb and TiO2-SnO2 mixed systems. Thin films have been prepared by the reactive sputtering from mosaic targets. It is demonstrated that titanium dioxide doped with Nb and Cr should be considered as a bulk sensor. Its performance is governed by the diffusion of point defects, i.e. very slow diffusion of Ti vacancies for TiO2: 9.5 at% of Nb and fast diffusion of oxygen vacancies in the case of TiO2: 2.5 at% Cr sensor. The corresponding response times are 55 min for TiO2: 9.5 at% of Nb and 20 s for TiO2: 2.5 at% Cr. In turn, sensors based on TiO2-SnO2, particularly those of the SnO2-rich composition, belong to the group of surface sensors.  相似文献   

18.
In this investigation, high transparent nanostructured TiO2 thin film has been prepared by a dip-coating method. The prepared sol was obtained through the hydrolysis of titanium isopropoxide under the selected pH. The transmission of film as an optical parameter was characterized by spectrophotometer. With respect to other experimental results, a high transmission spectrum without any fluctuation in visible wavelength region has been recorded. According to transmission spectrum of film the refractive index and extinction coefficient has been determined. Experimental result has shown that the prepared film has high transmission and good optical parameters. SEM and AFM have been applied for morphology characterization of the film surface.  相似文献   

19.
Xue-Yang 《Thin solid films》2010,518(22):6441-6445
In this study, the etching characteristics of ALD deposited Al2O3 thin film in a BCl3/N2 plasma were investigated. The experiments were performed by comparing the etch rates and the selectivity of Al2O3 over SiO2 as functions of the input plasma parameters, such as the gas mixing ratio, the DC-bias voltage, the RF power, and the process pressure. The maximum etch rate was obtained at 155.8 nm/min under a 15 mTorr process pressure, 700 W of RF power, and a BCl3 (6 sccm)/N2 (14 sccm) plasma. The highest etch selectivity was 1.9. We used X-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. Auger electron spectroscopy (AES) was used for the elemental analysis of the etched surfaces.  相似文献   

20.
Structural engineering of thin films of vertically aligned TiO2 nanorods   总被引:1,自引:0,他引:1  
Y. Zhang  X.H. Xia  M.L. Guo  G. Shao 《Materials Letters》2010,64(14):1614-1617
Self-assembled and vertically aligned rutile titania nanorods and thin films with a preferred [002] axial orientation were grown on substrates of fluorine-doped tin dioxide, using a hydrothermal method. Each nanorod was made of a bundle of densely packed and ultra fine nano-fibers growing along the [002] direction. The results show that ethanol substitution of water as solvent is highly effective in promoting the one-dimensional growth of the rutile nanorods and increasing their packing density in the thin films, which offers a simple-but-effectual leverage to monitor the nanorod structures for varied applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号