共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Kumar 《Thin solid films》2006,515(4):1475-1479
Ultra-thin TiO2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p3/2 peak at 455.75 eV observed for the Mo(112)-(8 × 2)-TiOx monolayer film can be assigned to Ti3+, consistent with our previous results obtained with high-resolution electron energy loss spectroscopy. 相似文献
2.
The effect of varying filament and substrate temperatures on the structure and electrical conductivity of crystalline SiC films prepared by HWCVD technique are described in this paper. At a constant filament temperature, the electrical conductivity of the SiC films increases with increasing substrate temperature. However, TEM studies show that there is no change in the size of the SiC columnar grains. On the other hand, a significant variation in filament temperature at constant substrate temperature leads to a variation of structure and conductivity. Raman spectroscopy and TEM studies reveal that crystallinity improves with increase in filament temperature. Furthermore, a μc-Si phase exists alongside SiC at low filament temperature (1750 °C). 相似文献
3.
Comparative study of substrate doping influence on surface morphology of 16-nm CuPc ultra-thin layers deposited on RCA-cleaned Si (111)/SiO2 substrates was carried out. The structure and the morphology of thin films were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. The investigations were aimed to provide information whether substrate doping type can be used as one of the parameters for engineering of the sensing layers structure. Atomic force microscopy images and results of photoemission experiments did not reveal any significant differences in morphology and surface chemistry between used substrates. Observed differences in surface morphology of organic overlayer could be caused by different substrate doping. The CuPc film grown on p-type RCA-Si (111) shows a compact network of densely packed crystallites, while the CuPc film deposited on n-type RCA-Si (111) reveals a slightly more open network of larger crystallites. These observations are confirmed by values of roughness, which is 0.97 nm and 1.47 nm for CuPc film on RCA-cleaned p- and n-type substrates, respectively. Results were compared with data obtained for similar 16-nm-thick CuPc layers deposited on n- and p-type Si (111) covered with native oxide. Good agreement between results of both studies was found out. 相似文献
4.
Using TiCl4, O2, and N2O as precursors, N-doped titanium dioxide thin films with large area and continuous surface were obtained by atmospheric pressure chemical vapor deposition. Measurements of X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron microscope and ultravoilet-Visible transmission spectra were performed. Using N2O as N-doped source, anatase-rutile transformation is accelerated through oxygen vacancies formation, and the mean grain size of rutile crystallites decreases with the increase of N2O flow rate. Compared to the pure TiO2, N-doped TiO2 films give a relative narrow optical band-gap, and their visible-light induced photocatalysis is much enhanced. Visible-light-induced hydrophilicity of the TiO2 thin films enhances with the increase of N2O flow rate, which might be due to the dentritic islands structure on the surface of the N-doped TiO2 thin films. 相似文献
5.
Highly crystalline silicon carbide films were synthesised by HWCVD technique. Raman spectroscopic studies show that the SiC films contain crystalline SiC and also carbon phases. Carbon is graphitic at higher chamber pressures (≥ 50 Pa) and resembles diamond-like carbon at low pressure (5 Pa). Cross-section TEM results show a columnar morphology of the crystallites with typical column diameters up to ∼ 50 nm. Transmission electron diffraction patterns reveal SiC in its cubic and hexagonal SiC phases and the C diamond phase at low pressure. Annealing at 1000 °C for 1 h results in enhancement of crystallite size without nucleation of new phases. 相似文献
6.
Nitrogen-doped titanium dioxide (TiO2) thin films were grown on (001) SiO2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τFWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO2. The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed. 相似文献
7.
16 nm thick Copper Phthalocyanine (CuPc) films were deposited at room temperature in Ultra High Vacuum onto “n” and “p” type doped Si(111) substrates covered with a native SiO2 overlayer. Atomic Force Microscopy indicates that the two substrates are both atomically flat (0.15 nm root mean square roughness). Angle dependent X-ray photoemission spectroscopy shows that the thickness of the native SiO2 over-layer is 0.8 nm (both for the “n” and “p” type Si substrate). Despite the identity of the substrate roughness, of the SiO2 thickness, and of the CuPc film growth conditions, the organic films (made out of crystallites in the α-phase, as checked with X-ray Diffraction) grown on the “p” and “n” type substrate show clearly different morphological features (determined with Atomic Force Microscopy and Scanning Electron Microscopy measurements). While the CuPc film on “p” Si(111) shows a compact network of densely packed crystallites with sizes (along the substrate plane) ranging from 50 to 100 nm, the CuPc film on “n” Si(111) shows a slightly more open network of larger crystallites (with 75-150 nm size range). Accordingly, the CuPc film roughness is 0.67 nm and 1.15 nm for the “p” and “n” type substrate respectively. Due to the increased surface to volume effects (lower crystallite size) affecting the CuPc film on “p” Si(111), this film exhibits stronger interaction with oxygen and water vapor of the ambient air, as determined by photoemission spectroscopy experiments performed on samples as grown “in situ” and after prolonged (1 year) exposure to air. 相似文献
8.
Jipo Huang Lianwei Wang Qinwo Shen Chenglu Lin Mikael
stling 《Thin solid films》1999,340(1-2):137-139
AlN thin films have been grown on Al-coated Si(100) and Si(111) substrates by using nitridation in high-purity nitrogen ambient, where the Al layer was previously deposited on Si by ultra-high vacuum (UHV) electron beam evaporation. The temperature of nitridation was found to play an important role in the formation of AlN films. XRD results showed AlN films formed by nitridation at 1000°C for 30 min exhibited good crystallinity with the preferred orientation of (002) for both Si(111) and Si(100) cases. Other analysis techniques, like Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy have been used to evidence the formation and purity of the AlN films. Scanning electron microscope observations of the films revealed a closely-packed granular texture. 相似文献
9.
S.C. Ray T.I.T. Okpalugo H.M. Tsai J.C. Jan P. Papakonstantinou W.J. Wang 《Materials Research Bulletin》2005,40(10):1757-1764
We have investigated the electronic and bonding structure using Fourier-transform infra-red (FT-IR) spectra and studied photoluminescence (PL) from micro-Raman spectra analysis of a-C:H:Si (Si:DLC) thin films deposited by plasma enhanced chemical vapour deposition (PECVD) method. Tetramethylsilane [Si(CH3)4, TMS] vapour was used as Silicon precursor and a bias voltage of 400 V was applied during deposition. It is observed from FT-IR spectra that with increasing TMS flow rate, the intensity of SiHn and CHn modes is increased significantly. PL study indicates that the PL is increased and that the PL peak position is shifted towards lower energy when the TMS flow rate increases gradually during deposition. 相似文献
10.
Maturity of silicon nanoelectronics and the high quality of 300 mm epi-Si wafers make these substrates an ideal choice for the growth of high quality III-Nitride devices. The results of our substrate engineering technique, which involves implantation of nitrogen into Si through an AlN thin film, have shown to simultaneously and significantly reduce the dislocation density and macro-cracks in epitaxially grown 2 μm GaN films. In this study, high quality strain engineered GaN films were grown by metalorganic chemical vapor deposition (MOCVD) and spectroscopic ellipsometry was used to characterize the dielectric properties, thickness, and stress of the complex structure. The uniaxial, anisotropic dielectric functions of wurtzite GaN and AlN were determined for the processes used in this study, and using this information, the thickness of each layer was determined in the completed film stack. IR spectroscopic ellipsometry (IRSE) was used as the non-destructive characterization technique to identify the IR sensitive phonon modes in AlN. The stress evolution in the films was investigated as a function of the phonon frequency shift and the broadening of the phonon modes. The results obtained by IRSE were further complemented by high resolution X-ray diffraction (HRXRD) and Raman scattering measurements. 相似文献
11.
Structure and dielectric properties of highly (100)-oriented PST thin films deposited on MgO substrates 总被引:1,自引:0,他引:1
High-quality Pb0.4Sr0.6TiO3 (PST) thin films have been epitaxially grown on MgO (100) substrates at various substrate temperatures by the pulsed laser deposition (PLD) technique. Their crystalline phase structures and surface morphology were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their in-plane orientation was observed by the Phi scans on the (111) plane. Their dielectric properties were measured by a precision impedance analyzer. Results show that the perovskite phase was stable in PST thin film. The crystalline phase formation of the thin film depended on the deposition temperature. The phase formation ability and (100)-orientation of these films were increased with increasing deposition temperature. Both of the high tunabilities and low dielectric loss of the thin films show that the (100)-oriented PST is a potential material that can be used for tunable applications. 相似文献
12.
Yaroslav E. Romanyuk Daniel Kreier Kin Man Yu Stephen R. Leone 《Thin solid films》2009,517(24):6512-8628
The effect of silicon nitridation on structural quality, indium incorporation, and electrical properties of the InGaN/Si heterojunctions is investigated. A series of InxGa1 − xN (x = 0-0.32) thin films are grown directly on Si(111) substrates, with and without a SixNy surface layer, by plasma-assisted molecular beam epitaxy. The crystalline quality is higher and the indium incorporation is increased when the InxGa1 − xN thin films are grown with the intentional SixNy buffer. These observations are explained by the reduced local elastic stress at the interface and N-polarity of the surface, both of which promote the incorporation of In. The obtained n-InxGa1 − xN/p-Si (x = 0.2-0.3) heterojunctions exhibit a nearly ohmic behavior, and the series resistance is higher for the SixNy-containing junctions. Our results suggest that unlike the amorphous SixNy region spontaneously formed during direct deposition of III-nitrides on Si, the SixNy layer obtained by high-temperature annealing of Si(111) in nitrogen atmosphere is beneficial to the InxGa1 − xN deposition. 相似文献
13.
The effect of laser fluence (laser incident energy in the range of 0.5-1.5 mJ/pulse with the same laser spot size of 0.5 mm × 0.7 mm) on the structural quality and optical properties synthesized by femtosecond pulsed-laser deposition has been studied. The structural quality and optical properties of the deposited CdS thin films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence measurement. The studies revealed an improvement in the structural quality and optical properties of the CdS thin films with increasing the laser fluence in some range. However, too high laser fluence could lead to the structural quality and optical properties of the CdS thin films to degrade. We defined the optimum laser incident energy was around 1.2 mJ/pulse. And the kinetic energy of the plasma produced by femtosecond laser strongly affects the structure and properties of the deposited CdS thin films. 相似文献
14.
A study of titanium thin films in transmission laser micro-joining of titanium-coated glass to polyimide 总被引:2,自引:0,他引:2
Taslema Sultana Golam Newaz Grigor L. Georgiev Gregory W. Auner Rahul Patwa 《Thin solid films》2010,518(10):2632-2636
Electron beam evaporation (EB-PVD) and cathodic arc physical vapor deposition (CA-PVD) techniques were used for the preparation of titanium (Ti) thin films onto Pyrex borosilicate 7740 glass wafers and the deposited films were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The microstructure and surface morphology of the films were studied as a function of the film deposition techniques. Film properties such as, adherence, microstructure and roughness were interconnected to the laser joint strength between Ti coated glass wafers and polyimide films. Ti thin films on glass had a natural oxide layer on the surface as found from XPS. AFM study showed the formation of a uniform Ti coating consisted of packed crystallites with average size of 35 nm by EB-PVD. The root-mean-square surface roughness of the films was 1-2 nm. Whereas, films prepared by CA-PVD had crystallites with an average size of 120 nm and defects in the form of macro-particles which is a common attribute of this deposition system. The surface roughness of the film was 125 nm. The laser joint strength was found to be influenced by the Ti film quality on the glass substrate. 相似文献
15.
M.T. Escote F.M. PontesE.R. Leite J.A. VarelaR.F. Jardim E. Longo 《Thin solid films》2003,445(1):54-58
Electrically conductive LaNiO3−δ (LNO) thin films with typical thickness of 200 nm were deposited on Si (111) substrates by a chemical solution deposition method and heat-treated in air at 700 °C. Structural, morphological, and electrical properties of the LNO thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field-emission scanning electron microscopy (FEG-SEM), and electrical resistivity ρ(T). The thin films have a very flat surface and no droplet was found on their surfaces. The average grain size observed by AFM and FEG-SEM was approximately 100 nm in excellent agreement with XRD data. The ρ(T) data showed that these thin films display a good metallic character in a large range of temperature. These results suggest the use of this conductive layer as electrode in the integration of microelectronic devices. 相似文献
16.
Bi0.4Ca0.6MnO3 (BCMO) film with a thickness of 110 nm was epitaxially grown on a (110) SrTiO3 (STO) substrate using pulsed laser ablation technique. The microstructure of the epitaxial films was investigated by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) in details. Two different kinds of dislocations, one being perpendicular to the BCMO/STO interface, the other being parallel to the interface, have been commonly observed. The formation mechanism for these dislocations has been discussed. All the dislocations are thought to relieve the local strain in the epitaxial film. 相似文献
17.
V.H. MudavakkatM. Noor-A-Alam K. Kamala BharathiS. AlFaify A. DissanayakeA. Kayani C.V. Ramana 《Thin solid films》2011,519(22):7947-7950
Yttrium oxide (Y2O3) thin films were grown at substrate temperatures (Ts) ranging from room temperature (RT) to 500 °C and their structural and electrical properties were evaluated. The results indicate that Y2O3 films grown at RT-100 °C were amorphous (a-Y2O3). Y2O3 films began to show cubic phase (c-Y2O3) at Ts = 200 °C. The average grain size varies from 5 to 40 nm as a function of Ts. Room temperature ac electrical conductivity increases from 0.4 (Ω-m)− 1 to 1.2 (Ω-m)− 1 with increasing Ts from RT to 500 °C. The frequency dispersion of the electrical resistivity reveals the hopping conduction mechanism. Frequency dispersion of the electrical resistivity fits to the modified Debye's function, which considers more than one ion contributing to the relaxation process. The mean relaxation time decreases from 2.8 to 1.4 μs with increasing Ts indicating that the effect of microstructure of the Y2O3 films is significant on the electrical properties. 相似文献
18.
A series of nanogranular Ti90Cr10 thin films have been fabricated by pulsed-laser deposition on Si substrates at different temperatures. The crystal structure and mechanical properties of these films were investigated. The X-ray diffraction and transmission electron microscope images with selected area diffraction showed that the structure of as-prepared films is dependent on film thickness and deposition temperature. It was found that the Ti90Cr10 films consisted of fine hexagonal close packed microstructure with columnar grains, while body close-packed cubic structure of Cr films are composed of irregular grains, meanwhile, a chromium disilicide (CrSi2) layer formed in the interface between the substrate and Cr films which deposited at temperature of greater than 600 °C. The crystalline and columnar grains improved with an increase of the thickness of the films and an optimum microstructure is obtained under the present experimental condition of about 50 nm thickness and deposited temperature of 500 °C for Ti90Cr10 films. Deposited at 300 °C, the Ti90Cr10 films have hardness of 12.7 GPa and elastic modulus of 174.6 GPa. Improved to 600 °C the sample shows higher hardness of 13.1 GPa and higher elastic modulus of 183.2 GPa. Using Benjamin-Weaver model, adhesion shearing force can be calculated as 34.9 MPa for 300 °C Ti90Cr10 film while higher value of 44.4 MPa for higher temperature of 600 °C. 相似文献
19.
E. Cappelli D.M. TrucchiS. Kaciulis S. OrlandoA. Zanza A. Mezzi 《Thin solid films》2011,519(12):4059-4063
The effect of deposition temperature and nitrogen inclusion in amorphous carbon (a-C) films, deposited by plasma enhanced pulsed laser deposition, on chemical composition and electronic transport has been studied. a-CNx films were deposited on Si (100) by pulsed ArF laser ablation of a graphite target, under N2 atmosphere. A radiofrequency (13.56 MHz RF) apparatus was used to generate plasma of excited nitrogen species, and its effect on nitrogen uptake and CNx film formation has been studied. Chemical and micro-structural changes associated to increased deposition temperature and nitrogen incorporation were examined by x-ray photoelectron spectroscopy; electrical properties were analyzed by the four-point-probe methods. Temperature-dependent conductivity measurements are tentatively interpreted and discussed in reference to chemical composition. 相似文献
20.
Formation of Zr-oxynitride thin films on 4H-SiC substrate 总被引:1,自引:0,他引:1
Yew Hoong WongKuan Yew Cheong 《Thin solid films》2012,520(22):6822-6829
Formation of Zr-oxynitride by simultaneous oxidation and nitridation in nitrous oxide of sputtered Zr on SiC substrate is reported. Sputtered Zr on SiC substrate and followed by oxidation and nitridation in nitrous oxide ambient for 15 min at different temperatures (400-900 °C) have been systematically investigated. By using X-ray photoelectron spectroscopy, chemical compositions, and depth profile analysis have been evaluated, as well as energy band alignment of Zr-oxynitride/interfacial layer/SiC system. Zr-oxynitride film of Zr-O, Zr-N, and/or Zr-O-N and its interfacial layer composed of mixed Zr-O, Zr-N, Zr-O-N, Zr-Si-O, Si-N, and/or C-N phases were verified. A possible model related to the oxidation and nitridation mechanisms has been proposed and explicated. 相似文献