首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
Thin films of Ge10Se90 − xTex (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of ~ 10− 4 Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.  相似文献   

2.
The structure and optical properties of a 80TeO2-(20−x)Li2O-xTiO2 glass system where x = 0, 5, 10, and 15 mol% has been investigated using FTIR spectroscopy and Brewster angle measurements. The sample preparation, linear refractive index and density measurements, and infrared spectroscopic analysis are described. The refractive index and density of the studied tellurite glass samples increase when the amount of Ti in the glass is increased. The dispersion of the phase refractive index was analyzed using Wemple’s model. The dispersion energy Ed is significantly affected by the addition of Ti to TeO2-based glass. The analysis of FTIR spectra indicate a Te coordination change that is in agreement with the increase of the Te coordination number determined from dispersion data using Wemple’s equation.  相似文献   

3.
Amorphous thin films of glassy alloys of Se75S25 − xCdx (x = 2, 4 and 6) were prepared by thermal evaporation onto chemically cleaned glass substrates. Optical absorption and reflection measurements were carried out on as-deposited and laser-irradiated thin films in the wavelength region of 500-1000 nm. Analysis of the optical absorption data shows that the rule of no-direct transitions predominates. The laser-irradiated Se75S25 − xCdx films showed an increase in the optical band gap and absorption coefficient with increasing the time of laser-irradiation. The results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The value of refractive index increases decreases with increasing photon energy and also by increasing the time of laser-irradiation. With the large absorption coefficient and change in the optical band gap and refractive index by the influence of laser-irradiation, these materials may be suitable for optical disc application.  相似文献   

4.
Thin films of Ge28−xSe72Sbx (x=0, 8, 16, 24 at%) with thickness of 200 nm are prepared by thermal evaporation onto glass substrates under vacuum of 5.3×10−5 mbar. Optical reflectance and transmittance of these films are measured at room temperature in the light wavelength region from 200 to 1100 nm. The estimated optical energy gap, Eg, is found to decrease from 2 eV (0 at% Sb) to 1.5 eV (24 at% Sb), whereas the band tail width, Ee, increases from 0.062 to 0.077 eV, respectively. The refractive index, n, and extinction coefficient, κ, are determined as functions of wavelength. The DC electrical conductivity, σ, of films is measured as a function of temperature in the range from 300 to 360 K. The extracted value of activation energy, ΔE, is found to decrease from 0.95 eV (0 at% Sb) to 0.74 eV (24 at% Sb). Optical and electrical behavior of films can be explained in terms of cohesive energy (CE) and Se-Se defect bonds.  相似文献   

5.
Silicon nitride (SiNx) is a material with many applications and can be deposited with various deposition techniques. Series of SiNx films were deposited with HWCVD, RF PECVD, MW PECVD and LF PECVD. The atomic densities are quantified using RBS and ERD. The influence of the atomic densities on the Si-N and Si-Si bond structure is studied. The density of N-N bonds is found to be negligible. New Si-N FTIR proportionality factors are determined which increase with increasing N/Si ratio from 1.2 · 1019 cm− 1 for Si rich films (N/Si = 0.2) to 2.4 · 1019 cm− 1 for N rich films (N/Si = 1.5). The peak position of the Si-H stretching mode in the FTIR spectrum is discussed using the chemical induction model. It is shown that especially for Si-rich films the hydrogen content affects the Si-H peak position. The influence of the composition on the refractive index of the films is discussed on the basis of the Lorentz-Lorenz equation and the Kramers-Kronig relation. The decreasing refractive index with increasing N/Si ratio is primarily caused by an increase of the band gap.  相似文献   

6.
CuIn1 − xGaxTe2 thin films with x = 0, 0.5 and 1, have been prepared by flash evaporation technique. These semiconducting layers present a chalcopyrite structure. The optical measurements have been carried out in the wavelength range 200-3000 nm. The linear dependence of the lattice parameters as a function of Ga content obeying Vegard's law was observed. The films have high absorption coefficients (4 · 104 cm− 1) and optical band gaps ranging from 1.06 eV for CuInTe2 to 1.21 eV for CuGaTe2. The fundamental transition energies of the CuIn1 − xGaxTe2 thin films can be fitted by a parabolic equation namely Eg1(x) = 1.06 + 0.237x − 0.082x2. The second transition energies of the CuInTe2 and CuGaTe2 films were estimated to be: Eg2 = 1.21 eV and Eg2 = 1.39 eV respectively. This variation of the energy gap with x has allowed the achievement of absorber layers with large gaps.  相似文献   

7.
The transmission spectra were used to obtain an efficient parameterization of the spectral dependences of the optical constants of amorphous As–S thin films by applying a suitable dielectric function model. For studying the compositional dependence of the optical constants, different compositions of AsxS100−x (x = 10, 15, 20, 25, 30 and 40 at%) thin films were deposited by thermal evaporation technique in a base pressure of 7.5 × 10−6 Torr at room temperature. The transmission spectra (measured in the wavelength range of 0.2–0.9 μm) were analyzed by applying O’Leary, Johnson, and Lim (OJL) model based on the joint density of states (JDOS) functions. However, the best fit of the optical data was obtained by considering the two-layer configuration film; the top layer was assumed to be consisted of a bulk AsS material embedded in voids (air). Therefore, OJL model along with Bruggeman effective-medium approximation (BEMA) model was used to determine the effective optical constants of the As–S thin films. The photon energy dependence of the dielectric function, ? = ?r − i?i of the investigated As–S films was presented. The film thickness, absorption coefficient α, refractive index n, extinction coefficient k, static refractive index n(0) and optical band gap Eg have been deduced. It was found that with the increase in arsenic content up to the stoichiometric As40S60, the indirect optical energy gap decreases, while the refractive index increases.  相似文献   

8.
The optical response of vacuum-evaporated Cd1−xZnxTe thin films in the 1.5-5.6 eV photon energy range at room temperature has been studied by spectroscopic ellipsometry. The films of Cd1−xZnxTe (x=0.04) were deposited at room temperature onto well-cleaned glass substrates of film thickness 450 nm. The measured dielectric-function spectra reveal distinct structures at energies of the E1, E11 and E2 critical points corresponding to the interband transitions. Dielectric related optical constants such as complex refractive index, the absorption coefficients and the normal incidence reflectivity, are presented. Results are in satisfactory agreement with the calculations over the entire range of the photon energies.  相似文献   

9.
S.A. Fayek 《Vacuum》2003,72(1):11-20
Ternary GaxSe86−xTe14 amorphous films (x=15 and 36) were prepared by thermal evaporation. The results of differential scanning calorimetry (DSC) at different heating rates are reported and discussed. The glass transition activation energy, Et, and the crystallization activation energy, Ec, were evaluated by measuring the heating rate dependence of the glass transition, crystallization onset and peak crystallization temperatures. The average calculated values of Et and Ec are 140.29 and 97.89 kJ/mol, respectively. The electrical conductivity of amorphous GaxSe86−xTe14 thin films with different thickness has been measured in the temperature range (263.2-333.3 K) and this allows the effect of introducing a metallic impurity to be observed. It was observed that conductivity increases with increasing activation energy and with a lowering of the pre-exponential factor, which suggests the results can be explained in terms of hopping conduction. The optical constants of these films were determined by transmission and reflection measurements at normal incidence in the spectral range of 500-800 nm. The refractive index has anomalous behavior in the spectral range 400-500 nm. The refractive index dispersion can be fitted to a single oscillator model.  相似文献   

10.
The electronic interface properties of Cu2 − xTe with CdTe have been investigated using in-situ photoelectron spectroscopy (XPS, UPS) in comparison to CdTe/Cu and CdTe/Te interfaces. A band bending towards the Fermi level as a result of the p-doping can be seen in the CdTe by depositing Cu2 − xTe. Different Cu2 − xTe films were prepared by varying the deposition parameters such as substrate temperature and deposition rate of the Cu and Te sources. For all Cu2 − xTe/CdTe interfaces a valence band offset of 0.8 ± 0.05 eV has been found.  相似文献   

11.
Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin chalcogenide films were deposited on glass and quartz substrates by the conventional thermal evaporation technique at 300 K. The chemical composition of the bulk material and as-deposited films were determined by energy dispersive analysis X-ray spectrometry (EDAX). X-ray diffraction pattern (XRD) of Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin films indicates that they have amorphous structure. The optical transmission and reflection spectra were measured in the range of 500 to 2500 nm. The optical absorption coefficient spectra were studied for deposited samples. It is observed that the optical absorption edge shift to higher energy range, as the germanium content, x, increases in the film. The type of electronic transition, responsible for the optical properties, is indirect allowed transition. It is found that the optical band gap increases as the Ge content increases.The average coordination number (Nc) in Gex Sb40−x Se60 films increases, but the number of chalcogenide atoms remains constant. The number of Ge - Se bonds and the average bond energy of the system increase with the increase of the average coordination number. The optical band gap, Eg, increases with the increase of the average coordination number, (Nc). Also the energy gap, E04, is discussed in terms of its relation to the chemical composition. The dispersion of the refractive index (n) is discussed in terms of the Single Oscillator Model (SOM) (Wimple - Didomenico model). The single oscillator energy (E0), the dispersion energy (Ed) and the optical dielectric constant (?) are also estimated.  相似文献   

12.
S. Saloum  M. Naddaf 《Vacuum》2007,82(1):50-55
Deposition of amorphous silicone-like (Si:Ox:Cy:Hz) thin films in a remote RF hollow cathode discharge plasma using hexamethyldisoloxane as monomer and Ar as feed gas has been investigated for films optical constants and plasma diagnostic as a function of RF power (100-300 W) and precursor flow rate (1-10 sccm). Plasma diagnostic has been performed using Optical Emission Spectroscopy (OES). The optical constants (refractive index, extinction coefficient and dielectric constant) have been obtained by reflection/transmission measurements in the range 300-700 nm. It is found that the refractive index increases from 1.92 to 1.97 with increasing power from 100 to 300 W, and from 1.70 to 1.92 with increasing precursor flow rate from 1 to 10 sccm. The optical energy band gap Eg and the optical-absorption tail ΔE have been estimated from optical absorption spectra, it is found that Eg decreases from 3.28 to 3.14 eV with power increase from 100 to 300 W, and from 3.54 to 3.28 eV with precursor flow rate increase from 1 to 10 sccm. ΔE is found to increase with applied RF power and precursor flow rate increase. The dependence of optical constants on deposition parameters has been correlated to plasma OES.  相似文献   

13.
By means of electron gun evaporation Ge1 − xSix:N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10− 4 Pa, then a pressure of 2.7 × 10− 2 Pa of high purity N2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge1 − xSix:N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (Eg) was calculated. The Raman spectra only reveal the presence of SiSi, GeGe, and SiGe bonds. Nevertheless, infrared spectra demonstrate the existence of SiN and GeN bonds. The forbidden energy band gap (Eg) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of Eg(x). In this case Eg(x) versus x is different to the variation of Eg in a-Ge1 − xSix and a-Ge1 − xSix:H. This fact can be related to the formation of Ge3N4 and GeSi2N4 when x ≤ 0.67, and to the formation of Si3N4 and GeSi2N4 for 0.67 ≤ x.  相似文献   

14.
The effects of nitrogen ion bombardment on TiO2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO2 film increased with irradiation time. The refractive index n of the TiO2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 × 10− 2 to 1.2 × 10− 1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film.  相似文献   

15.
Different compositions of Se100−x(SbSn)x (0 ≤ x ≤ 14 at.%) glasses were prepared by the well-known melt quench technique. Thin films of these glasses were prepared by thermal evaporation onto ultrasonic cleaned glass substrate. Transmittance spectra of these films were measured in the wavelength range 400–2500 nm by using Jasco double beam spectrophotometer. A straight forward analysis proposed by Swanepoel, based on the maxima and minima of the transmittance spectra, allows to accurate determination of the film thickness and the complex index of refraction. Increasing SbSn content at the expense of Se atoms is found to affect the refractive index and the extinction coefficient of these films. The refractive indexes were discussed in terms of the single-oscillator Wemple–DiDomenico model. The compositional dependence of the optical band gap for the Se100−x(SbSn)x (0 ≤ x ≤ 14 at.%) thin films is discussed in terms of the chemical-bond approach.  相似文献   

16.
The third-order optical nonlinearities of 80GeS2·(20 − x)Ga2S3·xY2S3 (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigated utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n2 in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n2 and low nonlinear absorption coefficient β, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.  相似文献   

17.
The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.  相似文献   

18.
A.H. Eid  A.M. Salem  T.M. Dahy 《Vacuum》2008,83(2):401-407
Stoichiometric bulk ingot materials of the ternary mixture Cd(1−x)MnxSe (0.05 ≤ x ≤ 0.9) were prepared by direct fusion of the constituent elements in vacuum sealed silica tubes. X-ray diffraction studies indicate that the investigated samples exhibited a hexagonal structure. The lattice parameters varied linearly with Mn content, following Vegard's law. Thin films were deposited by thermal evaporation from the pre-synthesized ingot material, onto glass substrates. X-ray and electron diffraction studies on the as-deposited and annealed films revealed an amorphous-to-crystalline phase transition at Ta ≈ 423 K. EDAX studies on the prepared films show that the as-deposited films are nearly stoichiometric. The transmittance and reflectance of the deposited Cd(1−x)MnxSe films were measured at normal light incident in the wavelength spectral range 500-2500 nm. Analysis of the transmittance spectra in the entire wavelength range allowed the determination of the refractive index. The dispersion parameters have been calculated, from which the static refractive index as well as static dielecric constant were calculated. Analysis of the absorption coefficient of the investigated films revealed the existence of both the allowed direct and forbidden direct optical transition mechanisms. The corresponding energies were estimated.  相似文献   

19.
The transparency of SbSeGe glasses in the IR region makes them attractive candidates for low transmission loss applications. The samples of Sb10Se90−xGex (x = 0, 19, 21, 23, 25, 27) glasses have been prepared by melt quench technique. The thin films of these glasses have been deposited by vacuum evaporation technique. The optical study of thin films has been carried out. The refractive index, oscillator parameters, optical band gap and dielectric parameters have been calculated from optical measurements. The optical study reveals that the variation in the density of localized defect states on Ge addition affects the optical parameters of the system. The variation in concentration of localized defect states has been interpreted in terms of the change in structural network of the system.  相似文献   

20.
Ba(Ti1  x,Nix)O3 ferroelectric thin films with perovskite structure are prepared on fused quartz substrates by a sol-gel process. Optical transmittance measurements indicate that Ni-doping has an obvious effect on the energy band structure of BaTiO3. It has been found that the refractive index n, extinction coefficient k, and band gap energy Eg of the films are functions of the film composition. The Eg of Ba(Ti1  x,Nix)O3 decreases approximately linearly as the Ni content increases, which is attributed to the decline of conduction band energy level with increasing the Ni content. On the other hand, n and k both increase linearly with increasing the Ni content because of the increase of packing density. These results indicate that thin films might have potential applications in BaTiO3-based thin-film optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号