首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
超细/纳米粉末改进Ti(C,N)基金属陶瓷性能研究进展   总被引:1,自引:0,他引:1  
综述了近几年超细或纳米粉末改进Ti(C,N)基金属陶瓷性能的方法,简要分析了含超细或纳米粉末Ti(C,N)基金属陶瓷的致密化问题.总结了真空烧结 热等静压处理和放电等离子烧结的特点,并分析了微波烧结和等离子活化烧结制备Ti(C,N)基金属陶瓷的可能性.  相似文献   

2.
Ti(C,N)基金属陶瓷的烧结工艺研究   总被引:1,自引:0,他引:1  
采用真空烧结工艺制备了Ti(C,N)基金属陶瓷,研究了烧结温度和保温时间对Ti(C,N)基金属陶瓷显微组织和力学性能的影响,并用SEM观察其断口形貌.结果表明:随着烧结温度的升高,金属陶瓷的组织逐渐变得均匀,硬质颗粒逐渐球化,且其环形相逐渐变得完整;温度过高,保温时间过长,晶粒都会明显长大,环形相变厚,导致材料性能下降.经1440℃烧结,保温60min,可获得较佳的性能,其抗弯强度达1914.2MPa,硬度HRA达90.1.  相似文献   

3.
Ti(C,N)基金属陶瓷的组织结构与合金化   总被引:1,自引:0,他引:1  
Ti(C,N)基金属陶瓷的高温红硬性、耐磨性和抗氧化性好,与金属材料间的摩擦系数低,是制作工模具和耐磨零部件的理想材料.简要介绍了合金化成分对Ti(C,N)基金属陶瓷组织结构和力学性能的影响以及多元(Ti,M)(C,N)固溶体粉末制备和金属陶瓷烧结技术的研究现状.  相似文献   

4.
概述了纳米/超细Ti(CN)基金属陶瓷的研究进展,重点对纳米Ti(CN)粉末的制备方法、纳米/超细Ti(CN)基金属陶瓷烧结过程中相组织的变化以及烧结工艺进行了介绍.指出成功制备纳米/超细Ti(CN)基金属陶瓷的关键在于控制烧结过程中Ti(CN)晶粒及环形相的长大,探索新的快速烧结方法.  相似文献   

5.
王赛玉  熊惟皓 《材料导报》2005,19(Z1):378-381
系统总结了近年来研究的Ti(C,N)基金属陶瓷材料的基本成分、制备过程、工艺处理及其组织与性能,阐述了影响Ti(C,N)基金属陶瓷材料性能的因素,提出了改善Ti(C,N)基金属陶瓷材料性能的努力方向.  相似文献   

6.
使用传统蜡基粘结剂和改进型蜡基粘结剂分别研究了Ti(C,N)基金属陶瓷粉末注射成形,热脱脂和溶剂脱脂 热脱脂工艺过程,其中包括根据粘结剂TGA制定并优化热脱脂的工艺曲线、不同的溶剂和温度对溶剂脱脂的影响、后续热脱脂工艺路线的确定.结果表明:使用改进型蜡基粘结剂的2#试样热脱脂工艺简单、周期短并易于控制;2#溶剂脱脂率明显高于使用传统蜡基粘结剂的1#试样;经过溶剂脱脂 热脱脂,1#试样脱脂率达到93%,2#试样脱脂率达到96%以上;1#烧结试样的抗弯强度为700 MPa左右,2#则达到1300 MPa,从烧结样品抗弯断口和显微组织的SEM图片得到了验证.Ti(C,N)基金属陶瓷注射成形采用改进型蜡基粘结剂比传统蜡基粘结剂脱脂效果好、力学性能高,改进型蜡基粘结剂更适合Ti(C,N)基金属陶瓷注射成形.  相似文献   

7.
Ti(C,N)基金属陶瓷的研究进展   总被引:1,自引:0,他引:1  
邱小林 《材料导报》2006,20(Z1):420-423
介绍了Ti(C,N)基金属陶瓷的晶体结构和高温力学性能,综述了其主要制备方法和研究进展,详细地分析了其冶金机理和相结构特点,并讨论了环型相的形成机理及缺点,最后指出了Ti(C,N)基金属陶瓷研究方向和提高其性能的基本途径,并认为系统考虑其相平衡、粉末冶金机制和加工工艺是制备性能优良的Ti(C,N)基金属陶瓷刀具和涂层的关键.  相似文献   

8.
碳纳米管增韧超细Ti(C|N)基金属陶瓷   总被引:3,自引:0,他引:3  
Ti(C,N)基金属陶瓷的低韧性限制了其广泛应用于切削刀具领域。为探究碳纳米管对超细Ti(C,N)基金属陶瓷断裂韧性的影响,采用化学镀工艺在碳纳米管表面镀Ni,采用粉末冶金法真空烧结制备了不同碳纳米管含量的超细Ti(C,N)基金属陶瓷。研究了不同含量镀镍和未镀镍的碳纳米管对Ti(C,N)金属陶瓷组织和断裂韧性的影响。扫描电镜照片表明 , 添加CNTs后,组织中出现无芯晶粒及微孔洞。压痕法测试断裂韧性的结果表明,纳米管的加入使超细Ti(C,N)金属陶瓷的断裂韧性提高 29. 4 %~62. 7 % , 碳纳米管增韧机制为裂纹偏转和桥接增韧、无芯晶粒增韧及微孔洞增韧。此外,随着碳纳米管含量的增加,超细CNTs/Ti(C,N)金属陶瓷复合材料的相对密度和硬度均有轻微下降。添加镀镍和未镀镍碳纳米管对超细Ti(C,N)金属陶瓷都具有很好的增韧作用。  相似文献   

9.
Ti(C,N)材料的研究进展   总被引:1,自引:0,他引:1  
分别介绍了Ti(C,N)陶瓷材料、Ti(C,N)基金属陶瓷材料和Ti(C,N)基复相陶瓷材料的组织结构、性能、优势及其制备方法。Ti(C,N)陶瓷材料的制备方法主要有气相沉积法、激光熔覆法和自反应喷涂法,Ti(C,N)基金属陶瓷材料的制备方法主要有粉末冶金法和自蔓延高温合成法,Ti(C,N)基复相陶瓷材料的制备方法主要有自反应喷射成形法和自反应喷涂法。最后介绍了Ti(C,N)材料的应用及其应用的局限性。  相似文献   

10.
搅拌球磨制备亚微米晶粒Ti(C,N)基金属陶瓷   总被引:4,自引:0,他引:4  
用搅拌球磨方法制备了亚微米TiC-TiN-WC-Mo-Ni-C金属陶瓷复合粉,并烧结成亚微米晶粒Ti(C,N)基金属陶瓷;研究了原始粉末粒度,磨球大小,球磨时间对复合粉粒度的影响,研究了球磨过程中氧和铁元素对粉末的污染情况;并对烧结合金的组织,性能进行了分析,表明亚微米晶粒Ti(C,N)金属陶瓷的性能优良。  相似文献   

11.
Changes in the nitrogen content of Ti(C,N)-based cermets during powder mixing and sintering processes were investigated and the denitrification mechanism was re-evaluated. The denitrification of N-containing cermets occurrs mainly during the powder mixing process, and is relatively small during sintering periods. Denitrification during powder mixing is caused by oxidation of the Ti(C,N) powders in contrast to denitrification during sintering, which is caused by the decomposition of the nitrides due to the high nitrogen partial pressure. It was concluded that the main source of oxygen for the powder oxidation was the water present in the ethanol solvent.  相似文献   

12.
范畴  熊惟皓  魏京  严明双 《材料导报》2005,19(12):124-126
用三点弯曲实验和显微分析评价了在基体中添加纳米粉和晶粒长大抑制剂对制备纳米粉改性Ti(C,N)基金属陶瓷的力学性能和微观组织的影响.实验结果表明:基体中添加纳米粉含量为5wt%,单向冷模压制压力控制在110~150MPa,最高烧结温度的保温时间为10min时,烧结坯的抗弯强度(TRS)达到2112 MPa,洛氏硬度(HRA)为90;晶粒长大抑制剂(1wt%TaC 0.5wt%Cr3C2)能较好地抑制晶粒长大.  相似文献   

13.
功能梯度Ti(C, N)基金属陶瓷制备技术   总被引:2,自引:1,他引:1  
通过真空液相烧结制备出Ti(C,N)基金属陶瓷基体,并对基体表面进行双辉等离子渗碳处理。运用扫描电子显微镜(SEM) 、电子探针(EPMA)、X射线衍射(XRD)等分析手段对渗碳前后材料的显微组织形貌、成分分布以及物相组成进行分析。结果表明,双辉等离子渗碳后金属陶瓷表面富Ti、Mo、W、C、N元素,贫Ni。渗碳过程中表层高的碳活度驱使内部的Ti、Mo、W元素向外迁移,从而迫使Ni向内迁移。渗碳后,材料表层富硬质相,近表层富粘结相。渗碳处理使试样表层硬度得到提高,对横向断裂强度影响不大。  相似文献   

14.
综述了Ti(C,N)基金属陶瓷烧结过程中的冶金基础.涉及烧结冶金过程中的几个重要的基础问题:Ti(C,N)的稳定性,粘结相同硬质相的润湿性,碳、氮化合物在粘结上中的溶解度及其选择溶解性.  相似文献   

15.
硬质相粒度对Ti(C,N)基金属陶瓷断裂韧性的影响   总被引:5,自引:0,他引:5  
用压痕法测定了具有不同粒度硬质相的Ti(C,N)基金属陶瓷的断裂韧度,结果发现,当成分和制备工艺不变时,Ti(C,N)基金属陶瓷的断裂韧性随硬质相粒度的增大而减小,进一步分析表明,当Ti(C,N)颗粒较粗时,极易发生穿晶断裂,并且裂纹连续穿晶扩展时亦不会发生显著的偏转或分叉,金属陶瓷呈现较强的脆性断裂特征,而当Ti(C,N)颗粒较细时穿晶断裂几率大大减小,裂纹较易沿Ti(C,N)颗粒与粘结相的界面扩展,导致脆性断裂现象减少和裂纹偏转而增韧。产生上述现象的主要原因与Ti(C,N)晶体的结构有关,面心立方结构的Ti(C,N)晶体中可能存在多个潜在的滑移面和滑移系,裂纹从一个Ti(C,N)颗粒扩展至另一个Ti(C,N)颗粒时很容易形成取向有利。  相似文献   

16.
肖水清  刘杰  肖白军  邓欣  伍尚华 《材料导报》2018,32(7):1129-1138
Ti(C,N)基金属陶瓷因具有高强度、高硬度、耐高温、耐酸碱、耐磨损等优良性能而被广泛应用于刀具、模具等。在高温切削加工时,金属陶瓷刀具不但具有优良的抗粘附性和热稳定性,还拥有比硬质合金刀具更好的高温红硬性、耐磨性和抗氧化性,并且具有自润滑性能。在日本,金属陶瓷刀具的应用占全部刀具的35%以上,欧美等国也达到20%以上,而在我国,金属陶瓷刀具和陶瓷刀具主要依靠进口,金属陶瓷刀具的使用量仅占刀具总量的3%。由此可见,我国金属陶瓷刀具的研发与生产应用远远落后于发达国家。为实现把我国建设成为全球制造业强国的梦想,必须加快我国金属陶瓷刀具研发、生产与推广应用,以改善加工业的加工精度和产品表面光洁度,提高加工业的加工效率,保证制造业零部件的高质量,全面提高我国制造业水平。虽然Ti(C,N)基金属陶瓷刀具比传统的硬质合金刀具有更好的高温红硬性、耐磨性和抗氧化性,但是冲击韧性、断裂强度较差及高温强度不够是其致命的缺点。为此,国内外学者在Ti(C,N)基金属陶瓷的强韧性方面展开大量的研究工作,并取得了一定的研究成果。研究工作主要集中在:(1)陶瓷相与金属相的成分;(2)烧结工艺;(3)引入纳米增强体。近两年来,由于钼、钴的资源短缺与价格上涨,从实际生产成本和高性能等方面考虑,一些学者还对无钼无钴、掺高熵合金Ti(C,N)基金属陶瓷的性能进行了研究。本文采用比较法,对有关Ti(C,N)基金属陶瓷材料强韧化的研究成果进行了分类、归纳与总结,从而得出了影响Ti(C,N)基金属陶瓷材料强韧化的三个因素——组成成分、显微结构和烧结工艺,并就此展开讨论;介绍了当前增强增韧Ti(C,N)基金属陶瓷的三种主要方法——纳米颗粒改性增韧法、晶须增韧法和纤维增韧法;最后提出关于今后Ti(C,N)基金属陶瓷材料的强韧化研究亟待解决的问题与发展方向。  相似文献   

17.
Different compaction processes were employed in studying the effect of green state on the sintering of TiC-TiN-Ni-Mo2C and Ti(C0.3N0.)-Ni-Mo2C cermets. Specimens were uniaxially pressed and some being subsequently compacted by cold isostatic pressing. Liquid and solid phase sintering was carried out in nitrogen atmosphere. Green state porosity, pore size distributions, as sintered morphologies, micro-hardness and microstructural development were characterized. Mercury porosimetry measurements indicate that with increasing compacting pressure, large pores are eliminated and the pore size distribution curves shift towards smaller pores. Higher compaction load also leads to decrease in average pore size and a wider pore size distribution. It was found that the Ti(CN)-based cermets are superior than the (TiC-TiN)-based cermet. Cermets with carbowax additives are better sintered than those without the wax. The two-stage consolidation (diepressing + CIP) results in better sintering properties than die-pressing alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号