首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于摄像机视觉反馈的方法,针对摄像机视觉参数未知及移动机器人质心和几何中心不重合且质心几何中心距离未知情况下,提出了一种不连续反馈控制律,并利用自适应技术对其进行修正,在证明时创新性地加了一个状态作为补充,最终证明了提出的控制律能使该视觉反馈系统下移动机器人的各状态由任意的初始状态指数收敛到原点,并利用MATLAB仿真验证了所设计控制器的有效性。  相似文献   

2.
轮式机器人执行巡逻、播种和工业生产等任务是一个强非线性的间歇过程.针对重复运行的轮式机器人轨迹跟踪问题,本文提出了一种基于数据驱动的高阶迭代学习控制算法.首先,对轮式移动机器人的模型进行推导设计,并对推导得到的状态空间形式的离散时间模型利用基于状态转移的迭代动态线性化方法,将轮式机器人系统转化为线性输入输出数据模型;其...  相似文献   

3.
Dead-reckoning/vision integrated navigation for mobile robot   总被引:1,自引:0,他引:1  
0 INTRODUCTIONInordertofulfilamission ,amobilerobothastohaveanavigationsystem .Severaldifferenttechniques ,suchasGPS ,anddead reckoningandbeaconbasedsys tem[1~ 3] canbeusedforrobotnavigation .Foraparticularkindofmission ,arobotwillfulfil ,aproperkindofnavi gationsystemwillbeusedfortherobot.Sincealmostallnavigationsystemshavetheiradvantagesanddrawbacks ,sometimesasinglenavigationsystemcannotsatisfyalltherequirementsforfulfillingaparticulartask[4 ] .Sotwoorthreenavigationsystemshavetobei…  相似文献   

4.
针对移动机器人声源定位技术的研究大都只实现了对声源的定向,而无法获得准确的声源距离信息的问题,提出了通过移动机器人主动运动实现声源目标距离测定的方法,以及一种基于粒子群优化算法的最优探测点计算方法.通过仿真验证了该方法的可行性和有效性,并且在室内环境下进行测试.试验结果表明:移动机器人可以通过主动运动到达最优探测点,并且实现对声源目标距离的测定.  相似文献   

5.
针对室内无线传感器网络通信传输不稳定和定位精度较差的情况,提出了一种移动机器人自主动态定位系统,通过实时选择邻近信标节点,确定节点坐标构成的边界,绘制局部网格空间,实现机器人动态定位.利用接收信号强度指标实现测距,然后采用基于测距的改进近似三角形内点测试(APIT)算法完成定位,再使用卡尔曼算法修正定位误差.该方法适用于室内网络传输不稳定的实际情况,采用卡尔曼滤波器获得最优数据.实验结果表明,该移动机器人自主动态定位方法比基于网格的极大似然方法具有更好的精度和适应性.  相似文献   

6.
基于卡尔曼滤波的WSNs节点定位研究   总被引:5,自引:0,他引:5  
节点定位是无线传感器网络中的关键技术之一。在采用装备有GPS装置的移动信标-移动机器人、无人机的基础上,将加权最小二乘估计与扩展卡尔曼滤波(EKF)组合,进行未知节点定位。算法首先利用加权最小二乘估计(WLSE),获得无线传感器网络未知节点的初步位置,再用扩展卡尔曼滤波进一步提高定位精度。并且提出了加权因子的确定方法,同时,算法还提出了移动信标位置参与EKF迭代计算的最优排序方案。算法可以实现传感节点的低成本定位,可以达到较高的定位精度。仿真结果显示,算法与目前常用的最小二乘估计相比,未知节点的定位精度有较大的提高。算法应用RSSI测距方式,它还可应用于TDOA,TOA等基于测距的定位算法中,具有较普遍的应用意义。  相似文献   

7.
移动机器人的障碍物快速检测是其导航、避障、轨迹跟踪的关键技术。目前多数传感器存在距离盲区以及异常尺度等问题,且现有算法大多计算复杂,难以满足实时性需求。为了改善这些问题,本文提出了一种基于环视逆投影差分的移动机器人障碍物快速检测与定位新方法。该方法以水平地面为参考平面,对移动机器人上环视系统中相邻视角相机拍摄的图像进行逆投影变换,再经图像差分得到逆投影差分图,图中像素值为零的点位于参考平面,反之则位于参考平面之外,经过阈值化、滤波后即可用来区分参考平面与非参考平面目标,实现其视场公共区域内障碍物的快速检测;同时以逆投影差分图为基础,通过像素坐标系到机器人自身坐标系的转换可获得目标相对于移动机器人精准的位置信息。在实际场景中对5 m范围内不同类型、大小、距离的障碍物进行测试,平均检测精度为97.3%,平均检测耗时为46 ms/帧,平均定位误差为1.1%。实验结果表明,本文方法能快速有效地检测和定位移动机器人附近的动、静态障碍物。  相似文献   

8.
本文以已知长方体作为标准标志物,依据从其一幅投影图象抽取的直线确定7个三角形,以其重心为基础拟合出3条直线,据此确定灭点和角点并使用透视投影基本方程对其中2个角点进行修正,利用这些点构造投影变形矩阵,提出一种计算摄像机参数的简单方法。本文考虑的是三点透视投影。  相似文献   

9.
在自主移动机器人相关技术的研究中,导航技术是其研究核心.动态不确定环境下的路径规划是自主移动机器人导航的关键环节之一,受到了许多学者的关注.多障碍环境下的路径规划,尤其是多障碍动态环境下的路径规划,是一个比较复杂的问题.通过混沌现象对自主移动机器人在动态环境下,利用传感器信息导航的复杂性进行了探讨.通过计算最大Lyapunov指数和描绘功率谱分析图这两种方法,确定了自主移动机器人从传感器上获得的机器人与障碍物间距离信息的时间序列存在混沌现象,揭示了自主移动机器人在动态环境下导航复杂性的原因.  相似文献   

10.
针对非规则部署的传感器区域,提出了一种新的移动信标动态路径规划方法。该方法基于人工势场思想,在移动信标上配置全向发射天线和定向接收天线,通过获取感知范围内未知节点与信标间的虚拟力来实时引导信标移动。仿真结果表明该方法有效可行。  相似文献   

11.
超声探测系统在移动式智能机器人中的应用   总被引:4,自引:0,他引:4  
系统地介绍了超声传感器的基本原理,结构特点,及其在移动机器人测距中的应用,针对测距中超声传感器存在的声速低,盲区大等问题,提出了门限比较法消除噪声引起的随机误差,采取交错启劝方法消除多传感器同时工作时产生的信息交叉干扰问题。  相似文献   

12.
针对非视距(NLOS)对无线传感器网络节点定位的影响,提出一种适用于非视距影响严重的低速自主移动节点的定位方法. 利用自主移动节点的速度和方向2个运动信息实现节点的初步定位,再利用未受非视距影响的信标节点发送的精确坐标与超声波测距信息经过比例运算得到精确的移动节点位置信息.仿真结果表明,该方法能够克服局部的非视距影响,具有定位精度高、计算工作量少等特点,适用于具有运动感知能力和硬件资源有限的低速移动节点定位.  相似文献   

13.
自主移动机器人在未知环境下需要依靠自身装配的传感器不间断地获得周围环境信息,辨别出障碍物的位置,进行计算和自主决策.现有导航算法在面临U型等复杂环境时容易在僵死路径上产生反复,导致导航不能继续.文中提出了一种基于模糊逻辑的局部优化导航算法,采用"辨识-记忆"策略来处理传感器信息.在路径规划中保留最近走过路径的位置和角度特征等相关资源,形成"记忆".当前规划路径形成死区并反复运行时,会形成"辨识"并重新规划路径和导航决策以避免障碍物碰撞.在Webots Pro和Matlab下设计仿真实验,结果表明移动机器人在模糊规则指导下能有效避障和避免死区现象,实现较好的自主导航.  相似文献   

14.
机器人双目视觉系统的标定与定位算法   总被引:2,自引:0,他引:2  
介绍了双目视觉系统的构成,选用简单实用的张正友标定法对系统使用的两个CCD摄像机进行了标定.基于双目视觉系统,提出一种计算物体位置信息的解析解方法——投影法,利用标定结果对不同位置进行深度信息测量,通过计算结果分析,基于视觉信息探测到的位置信息在1500mm范围内,3个方向的误差分别为0.72mm,0.69mm,20.96mm,验证了方法的正确性.  相似文献   

15.
Design of dead reckoning system for mobile robot   总被引:2,自引:0,他引:2  
A dead reckoning system for a wheeled mobile robot was designed, and the method for robot's pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.  相似文献   

16.
针对轮式移动机器人存在模型不确定性、非线性以及未建模的动态特性等因素,严重影响系统轨迹跟踪的稳定性和精确性,提出一种基于系统模型不确定性补偿的反演复合控制策略。基于非完整轮式移动机器人的运动学模型,采用反演控制思想以及李雅普诺夫稳定性判据设计轨迹跟踪的虚拟速度控制量,作为系统的持续激励输入。考虑轮式移动机器人具有模型不确定性和外部有界力矩干扰,根据轮式移动机器人的动力学模型推导得到系统不确定项,并采用具有高度非线性拟合特性的神经网络对其估计,得到模型的力矩控制量,且由李雅普诺夫稳定性分析得到不确定项的自适应律,实现自调整和实时轨迹跟踪。对比仿真表明,该复合控制策略能自适应的跟踪期望轨迹,与单一的反演控制、模型不确定性补偿控制策略、传统PID控制相比,均具有更好的鲁棒性和高的跟踪精度。  相似文献   

17.
基于视觉信息的移动机器人动态避障方法   总被引:1,自引:1,他引:0  
为了提高自主移动机器人的动态避障能力,提出了一种基于视觉信息的拟人动态避障方法,以视觉信息为决策依据,利用神经网络对障碍物的屏幕坐标和实际相对坐标进行非线性映射,在避障过程中只考虑障碍物相对于机器人的运动及可能的碰撞方式,无需考虑机器人和障碍物的运动速度和运动方向,仿真试验证明这种方法是可行而有效的.  相似文献   

18.
由于仿人机器人在跨越大尺度障碍时需要重心大幅度地偏移,从而导致机器人容易摔倒或是跨越的距离有限,而通过引入外力的方法能有效地改善机器人的跨越性能.本文主要研究双足机器人在额外外力的辅助下,无碰撞地跨越大尺度障碍物的问题.首先,通过树形数据结构、相对轴矢量和相对位置矢量,建立了双足机器人的仿真模型.然后,通过规划多次曲线跨越轨迹、引入整个跨越过程中的局部避障非线性约束和其他跨越约束的方法,建立起双足机器人越障及避障的多变量非线性优化模型.最终,求解出了平面6自由度的冗余机器人越障及避障的2维步态,通过仿真验证了其能够跨过高度为其腿长43%的障碍物.原理样机跨越15 cm高,为其腿长32%的障碍物,证明了本文所提越障及避障方法的有效性.  相似文献   

19.
新型可重构机器人逆运动学的研究   总被引:1,自引:0,他引:1  
提出新的模块建模方法,通过新的建模方法,可快速搭建机器人的运动学模型.将机器人在目标点的工作位形分解成有限个构形平面的方法,通过对分解的平面构形的工作空间描述,进行构形平面间的姿态和位置匹配,从而找到机器人的数值逆解.通过对采用基本模块搭建的八自由度机器人构形的运动学实例仿真,验证了该方法的可行性.  相似文献   

20.
差速轮式移动机器人的定位导航算法   总被引:1,自引:0,他引:1  
针对差速轮式移动机器人定位及导航算法中从圆弧路径切换到直线路径时车体晃动问题进行研究,提出了一种新的路径规划方法。首先介绍差速轮式移动机器人的定位算法和导航算法(直线导航、圆弧导航),然后分析从圆弧路径切换到直线路径时存在的问题及产生的原因并提出了一种新的路径规划方法,最后建立Simulink模型进行仿真。仿真结果表明新的路径规划方法取得了良好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号