首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The determination of dislocation distribution parameters is discussed for specimens where both strain broadening caused by dislocations and size broadening occur. If the strain broadening is well described by a model due to Wilkens, several methods are possible for the analysis of the broadening of diffraction lines. In sputter deposited nickel layers, three different methods for diffraction line broadening analysis yield identical results. The recrystallization of the nickel layers was investigated by annealing the layers at various temperatures in the range 300 K to 500 K. With increasing annealing temperature, the microstructure of the layers changed from a microstructure with small grains and high dislocation density, via a microstructure that is a mixture of small grains with high dislocation density and large grains with low dislocation density, to a microstructure with large grains and low dislocation density.  相似文献   

2.
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile.  相似文献   

3.
首先采用真空蒸镀法制备了不同厚度的铜薄膜,并对薄膜进行了退火处理;然后用X射线衍射仪测定铜薄膜的衍射谱,最后采用线形分析法对衍射谱进行计算,得到了不同厚度铜薄膜退火前后的晶粒尺寸和微应变。结果表明:真空蒸镀铜薄膜晶粒尺寸随薄膜厚度的增加而增大,微应变随薄膜厚度的增加而减小;退火处理后薄膜晶粒明显长大,薄膜微应变在退火处理后明显减小。  相似文献   

4.
A comprehensive analysis of size and strain broadened profile shapes in X-ray diffraction line broadening analysis is presented. Both size and strain broadened profiles were assumed to be Voigtian and the derived microstructural parameters (size and strain) were found to be in close agreement with those calculated from model independent Warren-Averbach method. The method is applied to three different alumina samples viz. micron size α-alumina (α-Al2O3) prepared by the combustion of aluminium nitrate and urea mixture, annealed samples and commercial α-Al2O3 sample. It is likely from the present analysis that a significant Gaussian size contribution is related to narrow size distribution observed from the analysis. It has been concluded that present Voigtian analysis is more reliable and may largely replace the earlier simplified integral breadth methods of analysis often used in line broadening analysis.  相似文献   

5.
The present study is an attempt to evaluate the structural changes observed in ceramic compositions based on aluminum oxide and phosphate H3PO4binders at creeping using IR spectroscopy, X-ray diffraction, and pectrographic analysis. The study reports the dependence of structural changes on the composition of the compounds, the type of phosphate binder, the temperature of processing, and the test conditions at creeping. On the basis of the test results and the data obtained elsewhere [1–7], it is surmised that the deformation process of phosphate compositions at high temperatures and loads is connected with a change in the physicochemical characteristics of the material and, as a consequence, with a change in its structure. It is revealed that the mechanism of deformation of aluminophosphate material at creeping depends primarily on the change in the matrix structure that cements the grains of electrocorundum in the material.  相似文献   

6.
Part 2 of this series of two papers presents the applications of the discrete singular convolution (DSC) algorithm. The main purpose of this paper is to explore the utility, test the accuracy and examine the convergence of the proposed approach for the vibration analysis of rectangular plates with internal supports. Both partial internal line supports and complex internal supports are considered for 21 square plates of various combinations of edge support conditions. The effects of different size, shape and topology of the internal supports and different boundary conditions on the vibration response of plates are investigated. The partial internal line supports may vary from a central point support to a full range of cross or diagonal line supports. Several closed‐loop supports, such as ring, square and rhombus, and their combinations are studied for complex internal supports. Convergence and comparison studies are carried out to establish the correctness and accuracy of the DSC algorithm. The DSC results are compared with those in the available literature obtained by using other methods. Numerical results indicate that the DSC algorithm exhibits controllable accuracy for plate analysis and shows excellent flexibility in handling complex geometries, boundary conditions and support conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the microstructure in heterostructured nanoparticles is crucial to harnessing their properties. Although microscopy is ideal for this purpose, it allows for the analysis of only a few nanoparticles. Thus, there is a need for structural methods that take the whole sample into account. Here, a novel bulk‐approach based on the combined analysis of synchrotron X‐ray powder diffraction with whole powder pattern modeling, Rietveld and pair distribution function is presented. The microstructural temporal evolution of FeO/Fe3O4 core/shell nanocubes is studied at different time intervals. The results indicate that a two‐phase approach (FeO and Fe3O4) is not sufficient to successfully fit the data and two additional interface phases (FeO and Fe3O4) are needed to obtain satisfactory fits, i.e., an onion‐type structure. The analysis shows that the Fe3O4 phases grow to some extent (≈1 nm) at the expense of the FeO core. Moreover, the FeO core progressively changes its stoichiometry to accommodate more oxygen. The temporal evolution of the parameters indicates that the structure of the FeO/Fe3O4 nanocubes is rather stable, although the exact interface structure slightly evolves with time. This approach paves the way for average studies of interfaces in different kinds of heterostructured nanoparticles, particularly in cases where spectroscopic methods have some limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号