首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Raj...  相似文献   

2.
《Soils and Foundations》2022,62(6):101216
A large amount of river silt is continuously dredged and usually dumped in landfills or oceans, resulting in land occupation and environmental pollution. Traditionally, cement-based materials are used to cement dredged river silt as building materials, which not only increases carbon dioxide emissions but also uses very little dredged silt. In order to realize the resource utilization of dredged river silt, microbial induced calcium carbonate precipitation (MICP) technology, which has the advantages of lower energy consumption, less environmental pollution and lower carbon emissions, is adopted to solidify the dredged river silt as roadbed materials in this paper. The unconfined compressive strength (UCS) test, calcium carbonate (CaCO3) content test and microstructure test are carried out to analyze the mechanical properties of the solidified dredged river silt. The test results show that the MICP mixing method can be employed to solidify loose dredged river silt into high-strength construction materials. The concentration of the cementation solution has a significant effect on the solidification effect, and the most reasonable concentration of the cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 6.75 MPa with a relatively uniform CaCO3 content of 27.8 %. The main crystal form of CaCO3 is calcite, which can fill the pores and make the river silt particles cement as a whole, which is the main reason for the improvement of mechanical properties of dredged river silt.  相似文献   

3.
《Soils and Foundations》2021,61(6):1529-1542
Biocemented soil columns were created at a reduced scale (mid-scale) using enzyme-induced carbonate precipitation (EICP) as a prelude to field scale deployment. Approximately 0.3 m diameter × 0.75 m long columns were created using a tube-à-manchette grouting technique in 0.6 m × 0.6 m × 1.2 m boxes filled with a dry washed quarry sand. Treatment solution composition and treatment protocol, including number of cycles of treatment and time interval between cycles, were established based upon laboratory testing. The urease enzyme used in the treatment solution was extracted from jack beans in a just-in-time manner on site. The biocemented soil columns were characterized in situ using shear wave velocity, needle penetrometer and pocket penetrometer testing, dimensional measurements, and by unconfined compression strength (UCS) and carbonate content measurements on specimens recovered from the columns. The in situ measurements indicated the target UCS of 500 kPa was achieved. However, the UCS tests on recovered specimens had inconsistent results, which may be attributed to sample disturbance. Overall, the results demonstrate that EICP is a viable method for creating biocemented soil columns for ground improvement.  相似文献   

4.
Calcareous sand is widely present in coastal areas around the world and is usually considered as a weak and unstable material due to its high compressibility and low strength. Microbial-induced calcium carbonate precipitation (MICP) is a promising technique for soil improvement. However, the commonly adopted bio-augmented MICP approach is in general less compatible with the natural soil environment. Thus, this study focuses on the bio-stimulated MICP approach, which is likely to enhance the dominance of ureolytic bacteria for longer period and thus is deemed more efficient. The main objective of this paper is to investigate the compressibility of calcareous sand treated by bio-stimulated MICP approach. In the current study, a series of one-dimension compression tests was conducted on bio-cemented sand prepared via bio-stimulation with different initial relative densities (Dr). Based on the obtained compression curves and particle size distribution (PSD) curves, the parameters including cementation content, the coefficient of compressibility (av), PSD, relative breakage (Br), and relative agglomeration (Ar) were discussed. The results showed that av decreased with the increasing cementation content. The bio-cemented sand prepared with higher initial Dr had smaller (approximately 20%–70%) av values than that with lower initial Dr. The specimen with higher initial Dr and higher cementation content resulted in smaller Br but larger Ar. Finally, a conceptual framework featuring multiple contact and damage modes was proposed.  相似文献   

5.
利用MICP技术固化南海某岛礁吹填珊瑚砂,对固化体试样进行了单轴抗压强度试验,基于损伤力学理论建立了单轴压缩条件下的固化体损伤本构模型。结果表明:利用MICP技术得到的珊瑚砂微生物固化体无侧限抗压强度均大于5 MPa,固化体单轴受压应力-应变曲线可大致分为压密阶段、弹性阶段、塑性阶段与破坏软化阶段。基于连续介质损伤力学理论,假定固化体微元强度服从双参数的Weibull分布,考虑应力-应变曲线特征进行参数简化后建立了单轴压缩条件下的损伤本构模型;模型采用经验拟合方程与损伤本构方程结合的分段函数形式,用试验资料初步验证了模型的合理性。  相似文献   

6.
The compressibility behavior of loose sands treated with Microbially Induced Carbonate Precipitation (MICP) is presented in this paper. The paper discusses the strain rate effects and evolution of at-rest earth pressure coefficient and elastic shear modulus during K0-loading. The soil samples were prepared in a triaxial cell in which a biological solution containing the ureolytic bacteria Sporosarcina pasteurii was injected and held under a small back pressure. Cementation treatments were injected following an alternated top and bottom sequence. The constant rate of strain, constant rate of loading, and pseudo K0-triaxial tests were performed at different strain and stress rates. On-specimen internal instrumentation consisting of a submersible load cell, three Hall Effect transducers, and vertical Bender Elements were used to control radial strains during K0-loading and measure small-strain shear modulus changes. Based on shear wave velocity measurements, the MICP-treated sand was lightly cemented and displayed soil-like behavior. The experimental results demonstrated a significant reduction in soil compressibility after MICP treatment. The material response was remarkably similar for every tested strain rate. The very small values of axial strains measured for the biotreated samples in relation to untreated control specimens for vertical effective stress levels below 200 kPa is evidence of the suitability of this treatment and shows its potential for use in field applications at relatively shallow depths.  相似文献   

7.
微生物诱导沉积碳酸钙沉积技术(MICP,Microbially Induced Calcite Precipitation)是利用岩土层中的细菌微生物,在人为诱导作用下,生成具有胶结作用的碳酸盐沉淀,附着于岩土层间隙内,用于改善岩土层的强度,增强地基稳定性。利用MICP技术加固福建标准砂,进行不同围压下的三轴试验,结果表明,标准砂加固前后黏聚力的提高值为60.1kPa。利用Plaxis软件模拟高速公路路基加固技术,通过MICP诱导碳酸钙沉淀技术对高速公路路基加固,改变岩土体基本性能,利用强度折减法模拟在MICP技术加固前后路基的强度及稳定性变化,稳定性系数由1.096增大为1.827,高速公路路基经过MICP加固后,稳定性大大提高,边坡破坏面由坡脚移动至坡面。  相似文献   

8.
目前尚没有简便可行的方法对现场微生物固化效果进行评价,因此,提出采用便捷无损的电阻率法评价砂土的固化效果.首先对微生物固化砂柱的电阻率与孔隙率、含水率和碳酸钙含量的关系进行研究,然后研究了电阻率和无侧限抗压强度的关系,并提出综合参数N表示固化砂柱的孔隙率、含水率和碳酸钙含量,研究综合参数与固化砂柱电阻率和无侧限抗压强度...  相似文献   

9.
Microbial Induced Calcite Precipitation (MICP) is one of the most popular biotechnological soil stabilization techniques since it results in significant improvements in the geotechnical properties of soil. The current study presents a laboratory-scale MICP investigation performed to demonstrate the feasibility of slope soil stabilization of the Hokkaido expressway through surficial treatment. The objectives of this preliminary study are to investigate the feasibility of (i) augmenting indigenous bacteria, and (ii) implementing commercially available inexpensive low-grade chemicals in microbial induced solidifications. Syringe solidification tests were carried out using indigenous ureolytic bacteria under various temperature condition with the use of different injection sources. A high strength crust layer was achieved on the soil surface with 420 kPa unconfined compressive strength (UCS) as measured by needle penetration test after 10 days of treatment using pure chemicals (30 °C; 0.5 M cementation solution, every 24 h; bacterial culture solution, only at the beginning). However, by substituting pure chemicals with low-grade chemicals, a significant improvement in the UCS of soil (820 kPa at 30 °C) was obtained together with a 96% reduction in the treatment cost. The morphologies and crystalline structures of the precipitated carbonate were characterized by Scanning Electron Microscopical (SEM) observations. This alternative approach of introducing low-grade chemicals in MICP has the potential to provide significant economic benefits in field-scale applications.  相似文献   

10.
微生物诱导碳酸钙沉淀(MICP)可以显著改善砂土的工程力学特性,但其固化效果易受诸多因素影响。基于不同胶结水平微生物固化砂土试样,开展固结排水三轴剪切试验和扫描电镜测试,探讨了MICP技术的固化效果及其相关机理;在此基础上,研究了胶结液浓度、砂土初始密实度、胶结液浓度配比等因素对微生物固化砂土抗剪强度的影响。结果表明:随着胶结水平的提高,微生物固化砂土试样强度提高,试样的脆性也越显著。微生物固化砂土强度的增长主要源于碳酸钙晶体对土体黏聚强度的提高。微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙晶体的含量。采用合适的砂土初始密实度,适当提高胶结液浓度以及胶结液中尿素的浓度占比,均可提高微生物固化砂土试样的胶结强度。  相似文献   

11.
采用二次注入菌液方式,制备不同浓度营养盐处理的MICP(微生物诱导碳酸钙沉淀)胶结砂样。选用巴氏芽孢杆菌作为固化细菌,采用单一浓度(0.5、1.0mol/L)和多浓度相结合(前期采用0.5mol/L,后期采用1.0mol/L)的处理方式注射营养盐(尿素/氯化钙混合液),研究多浓度营养盐结合处理方式对微生物固化砂土强度及均匀性的影响。基于试验测试分析了固化砂土试样不同区间段的强度、弹性模量以及碳酸钙含量。试验结果表明,多浓度营养盐处理方式对固化砂土试样的强度及碳酸钙含量有明显影响;多浓度营养盐结合处理方式能够保证试样有较好的均匀性条件下获得较高强度及弹性模量。基于多浓度营养盐处理方式,探讨分析了影响试样强度和均匀性的基本因素。  相似文献   

12.
This study addresses a soil improvement technique using plant-derived urease-induced calcium carbonate (CC) precipitation (PDUICCP) as an alternative to microbially induced carbonate precipitation (MICP). A crude extract of crushed watermelon (Citrullus lanatus) seeds was used as the urease source along with calcium chloride (CaCl2) and urea (CO (NH2)2) for CC precipitation. Test specimens (φ?=?2.3?cm, h?=?7.1?cm) made from commercially available Mikawa sand (mean diameter, D50?=?870?µm) were cemented, and estimated unconfined compressive strength (UCS) of several kPa to MPa was obtained by changing the concentration of CaCl2- urea, urease activity, curing time, and temperature. The increase of curing time and that of the CaCl2-urea concentration from 0.3?M to 0.7?M caused an increase in estimated UCS value. The average estimated UCS obtained after 14?days’ curing time for 0.7?M CaCl2-urea and 3.912 U/mL urease was around 3.0?MPa and for 0.3 and 0.5?M CaCl2-urea and 0.877 U/mL urease, it was around 1.5–2.0?MPa at 25?°C. By changing each of the abovementioned parameters, it may be possible to apply this method for strength improvement of loose sand, to mitigate the liquefaction, protection and restoration of limestone monuments and statuaries, and artificial soft rock formations. Crude urease from crushed watermelon seeds has the potential to replace commercially available urease for carbonate precipitation and for use as a low environmental impact type soil improvement method.  相似文献   

13.
The objective of this work is to calculate the compressive strength, ultrasound pulse velocity (UPV), relative dynamic modulus of elasticity (RDME) and porosity induced into concrete during freezing and thawing. Freeze–thaw durability of concrete is of great importance to hydraulic structures in cold areas. In this paper, freezing of pore solution in concrete exposed to a freeze–thaw cycle is studied by following the change of concrete some mechanical and physical properties with freezing temperatures. The effects of pumice aggregate (PA) ratios on the high strength concrete (HSC) properties were studied at 28 days. PA replacements of fine aggregate (0–2 mm) were used: 10%, 20%, and 30%. The properties examined included compressive strength, UPV and RDME properties of HSC. Results showed that compressive strength, UPV and RDME of samples were decreased with increase in PA ratios. Test results revealed that HSC was still durable after 100, 200 and 300 cycles of freezing and thawing in accordance with ASTM C666. After 300 cycles, HSC showed a reduction in compressive strength between 6% and 21%, and reduction in RDME up to 16%. For 300 cycles, the porosity was increased up to 12% for HSC with PA. In this paper, feed-forward artificial neural networks (ANNs) techniques are used to model the relative change in compressive strength and relative change in UPV in cyclic thermal loading. Then genetic algorithms are applied in order to determine optimum mix proportions subjected to 300 thermal cycling.  相似文献   

14.
利用微生物矿化碳酸钙(Microbial Induced Calcium carbonate Precipitation,简称MICP)沉积出具有胶结功能的碳酸钙,填充土内孔隙、胶结土颗粒,能够提高土体强度、降低渗透性,具有很好的土体改良作用,在微生物注浆、加固土坝、防风固砂、库底防渗、坝体防渗、污染土壤(地下水)修复等方面具有工程应用前景。对MICP土体改良研究进行了总结、分析和展望:利用MICP技术能够将砂土的无侧限抗压强度提高到20MPa以上,渗透系数降低到处理前的1%,剪切波速提高4倍,能够胜任岩土工程任务;认为下一步应重点对处理效果的均匀性、适用的地基土范围、处理土的全面性能开展系统研究,如耐久性、动力性能和防腐性能等。MICP技术已经在砂砾体稳定、地下室堵漏中得到了少量应用,工程应用施工技术是MICP应用的瓶颈。对MICP在岩土工程领域应用的施工技术进行了设计,包括地基加固、液化地基改良、污染土壤(地下水)修复、坝体防渗堵漏和加固砂桩,以推动MICP技术的实际工程应用为盼。  相似文献   

15.
Several research works have been carried out to study the fresh and hardened properties of concrete containing crumb rubber (rubbercrete) as a replacement of fine aggregate. The outcomes of these studies have highlighted the advantages and disadvantages of rubbercrete compared with conventional concrete mixtures. In view of the fact that rubbercrete is being used in the construction industry for a variety of purposes, evaluations of the rubbercrete mixtures using non-destructive tests such as rebound hammer (RH) and ultrasonic pulse velocity (UPV) to establish valid relationships is worthwhile. Fifteen mixtures with different w/c ratios (ratios of weight of water to weight of cement) and crumb rubber content percentages were prepared, cast and tested using RH and UPV at different curing ages. Models were proposed and statistically validated to predict the relationship between compressive strength with UPV and rebound number (RN) for rubbercrete mixtures at 3, 7 and 28 days.  相似文献   

16.
The presence of non-biodegradable plastic waste is a serious concern for the health of endangered species. The present study is based on the sustainable utilisation of polyethylene terephthalate (PET) fibres obtained from waste plastic bottles to enhance the liquefaction resistance of fine sand. After performing a series of stress-controlled cyclic triaxial tests, the cyclic behaviour of PET-fibre reinforced sand has been investigated. The application of PET fibres was found to be more satisfactory in medium dense sand than that in loose sand as observed by residual excess pore water curves. In medium dense sand with 0.6% PET-fibres, the number of cycles to reach liquefaction was about 4 times that of the unreinforced sand. Using the dynamic shear modulus (G), the degradation index was calculated for both reinforced and unreinforced soils to assess stiffness characteristics. After nearly 50 loading cycles, the value of G/Gmax increased 2.55 times with the addition of 0.4% PET fibres in unreinforced sand. Based on the results obtained, a regression model has been developed for the calculation of number of liquefaction failure cycles (Ncyc,L) in correlation with several parameters, namely, relative density (Dr), fibre content (FC) and σdc (σd = deviator stress, σc = effective confining stress).  相似文献   

17.
To improve the unconfined compressive strength (UCS) of a novel chemical grout composed of a calcium phosphate compound (CPC-Chem), we performed UCS tests and scanning electron microscopy (SEM) observations on sand test pieces cemented with CPC-Chem and four kinds of powders (tricalcium phosphate, TCP; magnesium phosphate, MgP; calcium carbonate, CC and magnesium carbonate, MgC) as seed crystals. The UCS of the CPC-Chem test pieces cemented with TCP and CC was significantly greater than that of the test pieces with no added powders. The UCS of the test pieces with TCP and CC additives exceeded the targeted value of 100 kPa and increased to a maximum of 261.4 kPa and 209.7 kPa for the test pieces with TCP and CC additives, respectively. Furthermore, the UCS of test pieces with 1 wt% or 5 wt% TCP and 1 wt% CC additives was maintained at a level exceeding 200 kPa for 168 days. SEM observations revealed net-like and three-dimensional structures in segments of test pieces cemented with 1 wt% or 5 wt% TCP and 1 wt% CC in CPC-Chem, which could have been the reason of the long-term stability of UCS (over 200 kPa for 168 days) observed in this study. These results suggest that the addition of TCP and CC significantly enhances the ground improvement afforded by CPC-Chem.  相似文献   

18.
Microbially induced calcite precipitation (MICP) is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials. New artificial biotreated geomaterials are produced based on the MICP technology for different parent soils. The purpose of this study is to explore the strength-increase mechanism and microstructural characteristics of the biotreated geomaterial through a series of experiments. The results show that longer mineralization time results in higher-strength biotreated geomaterial. The strength growth rate rapidly increases in the beginning and remains stable afterwards. The calcium ion content significantly increases with the extended mineralization time. When standard sand was used as a parent soil, the calcium ion content increased to a factor of 39 after 7 days. The bacterial cells with attached calcium ions serve as the nucleus of crystallization and fill the pore space. When fine sand was used as a parent soil, the calcium ion content increased to only a factor of 7 after 7 days of mineralization. The nucleus of crystallization could not normally grow because of the limited pore space. The porosity and variation in porosity are clearly affected by the parent soil. Therefore, the strength of the biotreated geomaterial is affected by the parent soil properties, mineralization time, and granular material pore space. This paper provides a basis for theory and experiments for biotreated geomaterials in future engineering practice.  相似文献   

19.
微生物固化能有效提高砂土的强度,但同样会导致土体破坏时呈现明显的脆性。为了平衡微生物固化砂土脆性破坏的不利影响,提出纤维加筋与微生物固化相结合的改性方法,即将质量分数为0%,0.05%,0.15%,0.25%和0.30%的聚丙烯纤维与石英砂均匀混合,然后基于微生物诱导碳酸钙沉积(MICP)技术对土样进行固化,并开展了一系列无侧限抗压试验,同时采用酸洗法测定了各组试样中的碳酸钙含量,进一步分析了试样的微观结构及纤维–土颗粒之间的界面作用特征。结果表明:①在微生物固化砂土中掺入纤维,能极大提高土样的无侧限抗压强度和残余强度,并能显著改善土样破坏时的韧性;②纤维掺量对微生物固化砂土的力学特性有重要影响,无侧限抗压强度随纤维掺量总体上呈先增加后减小的趋势,最优纤维掺量为0.15%,峰后残余强度与纤维掺量呈单调正相关关系;③纤维加筋使微生物固化砂土的峰后应力–应变曲线呈阶梯式下降模式,局部存在波浪式起伏特征;④纤维加筋能够提高微生物诱导碳酸钙的沉积效率和产量,与此同时,碳酸钙的胶结作用对纤维加筋效果具有促进作用。纤维加筋技术与MICP技术相结合能够实现优势互补,对提高工程结构的安全性与稳定性具有积极意义。  相似文献   

20.
The self-healing of a GCL with a circular hole is examined in experiments where the GCL, overlain by geomembrane, is hydrated from a silica sand subgrade (SSS) having three different pore water chemistries. Factors considered included: hole size, subgrade initial moisture content wfdn, GCL mass per unit area, and overburden stress (20–100 kPa). GCL self-healing is better for wfdn = 16% than for wfdn = 10%, which is better than for 5%, when the SSS pore water has negligible cations (ionic strength, I < 0.1 mM). However, only the 14.3 mm-diameter hole fully self-healed and only when wfdn = 16%. In contrast, when the GCL is hydrated from SSS with pore water having an ionic strength, I, of 20 and 30 mM, the self-healing for wfdn = 5% is better than for wfdn = 10%, which is better than for wfdn = 16%, although none of the holes self-healed. When a ~0.5 m hydraulic head was applied above the GCL under σv = 20–100 kPa, a 38.1 mm-diameter hole self-healed with water having I < 0.1 mM, a 25.4 mm-diameter hole self-healed with pore water with I = 20 mM and 30 mM, but none self-healed with simulated synthetic landfill leachate (SSL). Post-hydration hydraulic conductivity (k) tests with SSL suggest that a hole up to 14.3 mm-diameter would not pose a significant adverse impact on the k compared to an intact GCL; however, this is not the case for the larger holes tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号