首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the design of a linear-phase infinite-impulse-response (IIR) filter is presented. It involves designing a finite-impulse-response (FIR) filter satisfying the given frequency response specifications and subsequently obtaining a significantly lower order IIR filter using model reduction based on impulse-response gramians. The general outline of the method and a brief overview of the existing linear-phase FIR filter design and model-reduction techniques are presented. The impulse-response gramian and the model-reduction algorithm used are presented. The method is illustrated by design examples and is compared with other methods for the design of linear-phase IIR filters using equalizers  相似文献   

2.
This paper presents an indirect linear-phase IIR filter design technique based on a reduction of linear-phase FIR filters. The desired filter is obtained by minimizing the L2 norm of the difference between the original FIR filter and the lower order IIR filter. We first establish a relationship between the Hankel singular values of the discarded part of the FIR filter and the L2 norm of the corresponding filter approximation error based on model truncation. This result motivates us to propose a simple finite search method that will achieve better approximation results than commonly used truncation methods such as the balanced truncation (BT) and the impulse response gramian (IRG) methods. We then develop an iterative algorithm for finding an optimal IIR filter based on a matrix projection of the original FIR filter. The convergence of the proposed algorithm is established. Filters designed using the proposed algorithm are compared with those obtained by other techniques with respect to the amplitude response and group delay characteristics in the passband. Numerical examples show that the proposed algorithm offers the best performance  相似文献   

3.
This work addresses the design of LoG filters in the frequency domain within a structure formed by the cascade of quasi-Gaussian and discrete Laplacian filters. The main feature of such a structure is that it requires half the number of convolutions of the classical structure in which the LoG transfer function is expressed as the sum of two separable transfer functions of 1-D Gaussian and LoG type. Such a perspective allows one to rephrase the design of IIR and FIR filters for edge detection as a frequency domain approximation problem solvable by standard digital filter design tools. The zero-phase IIR solutions have a good performance at low orders and approximation errors practically independent of the aperture parameter. The characteristics of the nearly linear-phase IIR filters solving the problem suggest the consideration of linear-phase FIR filters with zeros constrained on the unit circle. The use of such filters leads to remarkable computational savings with respect to the filters designed by impulse response sampling. The agreement between the edge values obtained by the filters designed according to the scheme proposed in this work and those obtained by standard techniques is very good.Work carried out with the financial support of the C.N.R.-Progetto Finalizzato Robotica, contract no. 91.01942.PF67.  相似文献   

4.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

5.
This paper presents a method for the frequency domain design of infinite impulse response (IIR) digital filters. The proposed method designs filters approximating prescribed magnitude and phase responses. IIR filters of this kind can have approximately linear-phase responses in their passbands, or they can equalize magnitude and phase responses of given systems. In many cases, these filters can be implemented with less memory and with fewer computations per output sample than equivalent finite impulse response (FIR) digital filters. An important feature of the proposed method is the possibility to specify a maximum radius for the poles of the designed rational transfer function. Consequently, stability can be guaranteed, and undesired effects of implementations using fixed-point arithmetic can be alleviated by restricting the poles to keep a prescribed distance from the unit circle. This is achieved by applying Rouche's theorem in the proposed design algorithm. We motivate the use of IIR filters with an unequal number of poles and zeros outside the origin of the complex plane. In order to satisfy simultaneous specifications on magnitude and phase responses, it is advantageous to use IIR filters with only a few poles outside the origin of the z-plane and an arbitrary number of zeros. Filters of this type are a compromise between IIR filters with optimum magnitude responses and phase-approximating FIR filters. We use design examples to compare filters designed by the proposed method to those obtained by other methods. In addition, we compare the proposed general IIR filters with other popular more specialized structures such as FIR filters and cascaded systems consisting of frequency-selective IIR filters and phase-equalizing allpass filters  相似文献   

6.
A new procedure for the design of a real doubly complementary (DC) pair of digital filters obtained from an all-pass structure is presented. The filter design is based on a zero-phase FIR filter design with multi-band frequency specifications and approximate linear-phase characteristic. The resulting complex or real all-pass filter structure is guaranteed to be stable. Some examples illustrating the design method including comparisons with conventional approximately linear phase IIR filters are also shown  相似文献   

7.
This paper discusses a new method of designing linear-phased IIR Nyquist filters with zero intersymbol interference. The filters designed by this method possess linear-phase characteristics and are lower in order than other Nyquist filters designed by existing methods. Expressions are derived for zero-phased IIR Nyquist filters and efficient design methods are examined for them. The opted design method is based on an iteration process, and in each iteration step a modified version of the Remez exchange algorithm is used. In addition, the implementation of the designed zero-phased IIR filters is considered. Finally, the proposed design method is demonstrated through various design examples  相似文献   

8.
A new improvement to the Powell and Chau linear phase IIR filters   总被引:1,自引:0,他引:1  
An improvement to the realization of the linear-phase IIR filters is described. It is based on the rearrangement of the numerator polynomials of the IIR filter functions that are used in the real-time realizations proposed in literature. The new realization has better total harmonic distortion when a sine input is used, and it has smaller phase and group delay errors due to finite section length  相似文献   

9.
This correspondence describes a synthesis technique for IIR digital filters which allows the use of approximation methods already developed for designing FIR filters. The technique is based on the definition, by means of a suitable transformation, of a FIR filter associated to the desired IIR filter. An example of application is given and the related results are briefly discussed.  相似文献   

10.
The design of two-channel linear-phase nonuniform-division filter (NDF) banks constructed by infinite impulse response (IIR) digital allpass filters (DAFs) in the sense of L/sub /spl infin// error criteria is considered. First, the theory of two-channel NDF bank structures using two IIR DAFs is developed. Then, the design problem is appropriately formulated to result in a simple optimization problem. Utilizing a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the coefficients for the IIR DAFs. The resulting two-channel NDF banks can possess approximately linear-phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of a desired phase response and then to find its solution from a linear subspace in a few iterations. Several simulation examples are presented for illustration and comparison.  相似文献   

11.
A technique for realizing linear phase IIR filters   总被引:2,自引:0,他引:2  
A real-time IIR filter structure is presented that possesses exact phase linearity with 10~1000 times fewer general multiplies than conventional FIR filters of similar performance and better magnitude characteristics than equiripple or maximally flat group delay IIR filters. This structure is based on a technique using local time reversal and single pass sectioned convolution methods to realized a real-time recursive implementation of the noncausal transfer function H(z-1). The time reversed section technique used to realize exactly linear phase IIR filters is described. The effects of finite section length on the sectional convolution are analyzed. A simulation methodology is developed to address the special requirements of simulating a time reversed section filter. A design example is presented, with computer simulation to illustrate performance, in terms of overall magnitude response and phase linearity, as a function of finite section length. Nine example filter specifications are used to compare the performance and complexity of the time reversed section technique to those of a direct FIR implementation  相似文献   

12.
The design of two-channel linear-phase quadrature mirror filter (QMF) banks constructed by real infinite impulse response (IIR) digital all-pass filters is considered. The design problem is appropriately formulated to result in a simple optimisation problem. Using a variant of Karmarkar's algorithm, the optimisation problem can be efficiently solved through a frequency sampling and iterative approximation method to find the real coefficients for the IIR digital all-pass filters. The resulting two-channel QMF banks possess an approximately linear phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of the desired phase response and then finding its solution from a linear subspace in a few iterations. Finally, several simulation examples are presented for illustration and comparison  相似文献   

13.
14.
Optical half-band filters   总被引:4,自引:0,他引:4  
This paper proposes two kinds of novel 2×2 circuit configuration for finite-impulse response (FIR) half-band filters. These configurations can be transformed into each other by a symmetric transformation and their power transmittance is identical. The configurations have only about half the elements of conventional FIR lattice-form filters. We derive a design algorithm for achieving desired power transmittance spectra. We also describe 2×2 circuit configurations for infinite-impulse response (IIR) half-band filters. These configurations are designed to realize arbitrary-order IIR half-band filter characteristics by extending the conventional half-band circuit configuration used in millimeter-wave devices. We discuss their filter characteristics and confirm that they have a power half-band property. We demonstrate design examples including FIR maximally flat half-band filters, an FIR Chebyshev half-band filter, and an IIR elliptic half-band filter  相似文献   

15.
16.
A general design algorithm is presented for infinite impulse response (IIR) bandpass and arbitrary magnitude response filters that use optical all-pass filters as building blocks. Examples are given for an IIR multichannel frequency selector, an amplifier gain equalizer, a linear square-magnitude response, and a multi-level response. Major advantages are the efficiency of the IIR filter compared to finite impulse response (FIR) filters, the simplicity of the optical architecture, and its tolerance for loss. A reduced set of unique operating states is discussed for implementing a reconfigurable multichannel selection filter  相似文献   

17.
Adaptive infinite impulse response (IIR) filters provide significant advantages over equivalent finite impulse response (FIR) implementations because they are able to more accurately model physical plants that have pole-zero structures. Additionally, they are typically capable of meeting performance specifications using fewer filter parameters. This savings in parameters, which can be as much as 5–10 times, leads to the use of fewer multiplier blocks and therefore, lower power consumption. Despite these advantages, adaptive IIR filters have not found widespread use because the associated mean squared error (MSE) cost function is multimodal and therefore, significantly difficult to minimize. Additionally, the filter can become unstable during adaptation. These two properties pose several problems for adaptive algorithms, causing them to be sensitive to initial conditions, produce biased solutions, unstable filter configurations or converge to local minima. These problems prevent the widespread use of adaptive IIR filters in practice and if such filter structures are to become more practical, new, innovative solutions are required. This paper proposes a new algorithm for minimizing the MSE cost function of adaptive IIR filters aimed at addressing some of the aforementioned issues. We adopt the approach of using a Branch-and-Bound algorithm, which is an exhaustive search method, and employ interval arithmetic for all computations. Simulation results show that the resulting algorithm is viable and competitive and, when compared with a number of existing state-of-the-art algorithms, outperforms them in terms of the MSE of the final point.   相似文献   

18.
An algorithm for designing an infinite-impulse-response (IIR) stable filter using a finite-impulse-response (FIR) given filter, with the objective of reducing the delay and order, is described. The design is in the time domain using the least-squares-inverse algorithm, which is briefly described. In this method, the numerator of the approximated filter is part of the FIR filter itself and no calculations and minimization are needed to find the numerator coefficients (except finding the FIR roots). An error analysis between the given FIR and approximated IIR filters is provided. This error analysis enables the designer to fix a design parameter, often unnoted, keeping the energies of the approximated and original filters equal. Results and two illustrative examples are presented  相似文献   

19.
This paper considers multidimensional infinite-impulse response (IIR) filters that are iteratively implemented. The focus is on zero-phase filters with symmetric polynomials in the numerator and denominator of the multivariable transfer function. A rigorous optimization-based design of the filter is considered. Transfer function magnitude specifications, convergence speed requirements for the iterative implementation, and spatial decay of the filter impulse response (which defines the boundary condition influence in the spatial domain of the filtered signal) are all formulated as optimization constraints. When the denominator of the zero-phase IIR filter is strictly positive, these frequency domain specifications can be cast as a linear program and then efficiently solved. The method is illustrated with two two-dimensional IIR filter design examples.  相似文献   

20.
This communication generalizes the lattice structure of IIR digital filters and shows its relation with classical structures. The algorithm for computing the corresponding reflection coefficients is given. It is also shown that this algorithm computes the greatest common divisor of the numerator and the denominator of the transfer function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号