首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This article presents a low‐profile broadband antenna. The E‐shaped metal cells are utilized on the top layer, which is excited by the microstrip line through the coupling slot in the ground plane. The characteristics of the E‐shaped patch cell and antenna are extensively investigated and presented. Dual resonances with close proximity are obtained to realize wideband impedance matching. An attractive feature is found that the bandwidth of the antenna exhibits good correlation with the inductance. The interesting analysis is presented by directly loading inductors to the antenna, and the bandwidth shrinks quickly with larger inductance loaded. Therefore, the antenna proposed in this article has good potential in bandwidth tuning applications. A typical bandwidth from 5.1 to 6.7 GHz is achieved by the fabricated antenna with a maximum measured gain of 10.4 dBi. Meanwhile, the antenna remains a low profile of 0.09 λ g.  相似文献   

2.
In this article, a high‐gain and dual‐polarized antenna with UWB operation is proposed. The antenna is composed of two tapered dipoles as radiating elements, which are arranged orthogonally and fed perpendicularly to achieve polarization diversity. A metallic cavity reflector is placed behind the radiator for high gain radiation entire the operating bandwidth. To validate the design method, an antenna prototype is designed, fabricated, and measured. The measured results demonstrate that the proposed design has good performance with |S11| ≤ ?10 dB and isolation ≥20 dB over a frequency band 3.2‐8.8 GHz, equivalently to about 93.3%. In addition, unidirectional radiation pattern and broadside gain of from 8.1 to 11.8 dBi are obtained across the operating bandwidth.  相似文献   

3.
A wide‐beam circularly polarized (CP) cross‐dipole antenna for GNSS applications is proposed in this article. This cross‐dipole antenna is fed by a coaxial cable, on which the slots is added to optimize the impedance matching. These two pairs of dipole arms are designed with different lengths to obtain the circularly polarized radiation. Enhanced wide‐beam CP radiation characteristics can be achieved by curving the dipole arms and adjusting the distance between the arms and the metallic ground plane. The study of proposed antenna performance with different geometric parameters has been conducted. The final antenna exhibits a good impedance bandwidth (IBW) of ~13.1% (1.50‐1.71 GHz), and the 3‐dB axial‐ratio bandwidth is over 7% (1.52‐1.64 GHz). Broad pattern coverage of more than 140°, pure CP radiation at all designed bands and a wide 3 dB axial‐ratio beamwidth (ARBW) of nearly 150° makes this antenna an excellent candidate for satellite communications and navigation systems.  相似文献   

4.
In this article, a metamaterial‐based broadband low‐profile antenna is presented. The proposed antenna employed an array of uniplanar quasi‐composite right/left‐hand (CRLH) metamaterial cells. This structure contributes to exciting the operating modes in lower frequencies. The antenna has an overall electrical size of 0.75 × 0.60 × 0.07 λ030 is the center operating wavelength in free space) and provides a 25% measured bandwidth with the center frequency of 5.1 GHz and maximum gain of 6.6 dB. The proposed antenna is an appropriate candidate for WLAN, WiMAX, and other wireless communication applications.  相似文献   

5.
In this article, we investigate bandwidth‐enhancement of a circularly‐polarized (CP) Fabry‐Perot antenna (FPA) using single‐layer partially reflective surface (PRS). The FPA is composed of a single‐feed truncated‐corner square patch antenna, which is covered by the PRS formed by a square aperture array. We revealed that the finite‐sized PRS produces extra resonances and CP radiations for the antenna system, which broadened the impedance matching and axial ratio (AR) bandwidths significantly. For verification, a broadband CP FPA prototype operating near 5.8 GHz was realized and tested. The fabricated antenna with overall size of 125 mm × 125 mm × 23.5 mm achieves a |S11| < ?10 dB bandwidth of 31.7% (5.23‐7.2 GHz), an AR < 3‐dB bandwidth of 13.7% (5.45‐6.25 GHz), the peak gain of 13.3 dBic, a 3‐dB gain bandwidth of 22.38% (5.0‐6.26 GHz), and a radiation efficiency of >91%.  相似文献   

6.
In this article, a novel double‐slot linearly tapered slot antenna with conformal corrugated edges, is proposed. By using double‐slot structure, the E‐plane aperture field of the proposed antenna is more like a plane wave, which helps to improve the directivity of the antenna. Meanwhile, a novel corrugated edge is designed. This conformal corrugated edge can cover all the outer edges of the antenna which has a better improvement of the impedance bandwidth compared with the rectangle corrugated edge. Additionally, according to the theory of microwave network, this article analyzes the reason of bandwidth enhancement realized by double‐slot structure. The proposed antenna provides 145% fractional bandwidth from 3.5 GHz to 22 GHz. The gain of the proposed antenna is more than 12 dB from 6.5 GHz to 21 GHz, and more than 8 dB at the whole operating band.  相似文献   

7.
A single‐feed T‐type fractal boundary microstrip antenna is presented. It is established that a very good circular polarization is realizable with 3‐dB axial ratio bandwidth of 1.27% at the center frequency of 2446 MHz by changing the electrical length in two directions of the square patch by using T‐type fractal curve as boundary. Further it is shown that the surface area occupied by the antenna is reduced compared to the Euclidean shaped patch antenna without much degradation in gain of the antenna. Experimental results are compared with simulated results and a very good agreement is obtained. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

8.
This article presents design and analysis of three wide band zeroth‐order resonance antennas (antennas I, II, and III) using composite right and left‐handed transmission line (CRLH‐TL) approach. Coplanar waveguide technology, single layer via‐less structures are used to have the design flexibility. The bandwidth characteristics are analyzed by using lumped parameters of CRLH‐TL. By introducing a simple slot in the ground plane of antenna I both bandwidth enhancement and circularly polarization characteristics are achieved in antenna II. Another quarter wave L‐shaped slot has been introduced in the ground plane of antenna II to introduce a notch band in the frequency response of antenna III. Achieved measured 10 dB return loss bandwidth of antenna I and antenna II are 960 (3.3‐4.26 GHz) and 2890 MHz (2.77‐5.66 GHz), respectively. Antenna III offers measured 10 dB return loss bandwidth of 3220 MHz (2.32‐5.54 GHz) with a band notch from 2.39 to 2.99 GHz that isolates the 2.4 GHz WLAN and 3.5 GHz WiMAX band. Antenna II and antenna III have circular polarization property with measured axial ratio bandwidth of 440 MHz. The measured peak realized gain of antennas II and III is around 1.53‐2.9 dBi.  相似文献   

9.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   

10.
This article proposed a novel broadband high‐gain antenna designed by suspended cuboids and differential shorting strips on a circular ground plane. The design structure of the proposed antenna is simple and all its components such as cuboids, strips, and ground plane are fabricated by a copper sheet of thickness 0.5 mm. The proposed antenna has measured ?10 dB impedance bandwidth (IBW) 45% (2.35‐3.7 GHz) with broadside gain of 10.1 ± 0.4 dBi over IBW. The use of differential strips in inner cuboid improved the cross polarization and enhanced the broadside gain. The measured antenna has low cross polarization is below 25 dB in the broadside direction over IBW. The proposed antenna has 1 dB gain‐bandwidth 53% (2.2‐3.8 GHz) in the broadside. The antenna has been fabricated and measured; the results show a good agreement with simulated results.  相似文献   

11.
This article presents a novel compact circularly polarized multi‐slotted large bandwidth antenna for intelligent transportation system (ITS). The proposed antenna has a rectangular shaped multi‐slotted patch on upper side and a partial ground plane with multiple slots on lower side. The designed prototype antenna works from 22 to 29 GHz and is therefore applicable for ITS and weather forecasting applications. The design structure is distinct in terms of a low profile as well as simple structure, which is advantageous in mass production. Moreover, the multiple slots design antenna provides enhanced bandwidth. The axial ratio shows that the proposed antenna's behavior is circularly polarized with a compact size of 30 × 20 mm2. The measured reflection coefficient, gain, and the radiation pattern are consistent with simulated results. The proposed antenna has a reflection coefficient below ?20 dB and maximum gain of ~5 dBi at 24 GHz (ITS band).  相似文献   

12.
A multi‐band directional multiple‐input–multiple‐output (MIMO) antenna system is presented based on a rectangular loop excited Quasi‐Yagi configuration. A 64% reduction in size is obtained using a rectangular meandered element as well as a small ground plane. The proposed two‐element MIMO antenna system covers the Telemetry L‐band and several LTE/WLAN bands. It has a wide measured bandwidth of 689 MHz (1.897–2.586 GHz) in the desired band centered at 2 GHz, and a measured bandwidth of more than 168 MHz across rest of the bands. The MIMO antenna system has a total size of 45 × 120 × 0.76 mm3, with a single element size of 55 × 60 × 0.76 mm3. The non‐desired back‐lobe radiation which is obtained using a small ground plane, is significantly reduced by using a novel defected ground structure (DGS) as compared with the complex techniques present in literature. The proposed DGS provides a high measured front‐to‐back ratio of 14 dB at 2 GHz and 11 dB in other bands. A maximum measured realized gain of 5.8 dBi is obtained in the desired band using a single parasitic director element. The proposed MIMO antenna system has a minimum measured radiation efficiency of 70%, isolation of 12 dB, and envelope correlation coefficient of 0.098 within all bands which ensures very good MIMO performance.  相似文献   

13.
This article presents the miniaturization of a planar half elliptical ultra‐wideband dipole. By simply placing a concaved arm in close proximity to the original structure, a 45% area reduction in terms of electrical wavelength can be achieved. The proposed antenna exhibits a wide measured return loss bandwidth of 2 to 9.9 GHz and omnidirectional radiation patterns across the band. The design features a footprint size of 41.5 × 41.5 mm2 and an electrical size of 0.28λ × 0.28λ at 2 GHz. Compared with some previously reported planar designs, the proposed antenna presents a more compact electrical dimension and better or comparable bandwidth. Critical geometric parameters of the structure, particularly the concaved arm, are investigated to understand the miniaturization and operating mechanism of the design. Satisfactory correlation between the simulation and measurement data is obtained.  相似文献   

14.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

15.
This article proposes a simple and low profile planar Goubau line based end‐fire antenna. End‐fire radiation is achieved by modifying the Goubau line into inverted periodic arrangement of V‐shaped unit cells. Designed prototype is simulated and verified experimentally. Both the simulated and measured results are in good agreement. Proposed antenna radiates toward end‐fire direction between 7.8 and 8.3 GHz. The maximum gain of the antenna is obtained around 7.2 dBi. The average efficiency is observed 70% over the entire operating bandwidth. Proposed end‐fire antenna has a single metallic layer with simple configuration which is easy to fabricate and also easy to integrate with other electronics circuits. The proposed antenna can be used for satellite and RADAR applications.  相似文献   

16.
This article presents a miniaturized ultra‐wideband planar monopole antenna with an oval radiator. The proposed antenna is fed by a coplanar waveguide (CPW), and two L‐shaped stubs are extended from the ground plane of the CPW. This presented antenna is able to produce resonances in the lower frequency band and realize better impedance matching performance in the middle and higher frequency bands with the aid of the L‐shaped stubs. The antenna was built and tested. The total size of the proposed antenna is only 26 × 20 × 1.6 mm3. Its measured –10 dB impedance bandwidth is 10.1 GHz (3.1‐13.2 GHz). The measured far‐field radiation patterns are stable in the whole operating frequency band.  相似文献   

17.
A miniaturized inset‐fed on‐body meandered bowtie antenna designed for brain microwave imaging systems is presented in this article. The proposed on‐body antenna can contribute to the realization of a wearable and portable brain microwave imaging system. The size of 18 × 18 mm2 is achieved at a frequency range of 0.75 to 4 GHz by the simultaneous use of self‐complementary structures and meandered lines. The frequency band is a trade‐off between penetration depth and spatial resolution. The proposed antenna performance was studied at different positions on the human head voxel model in terms of several parameters such as reflection coefficient, near‐field directivity, and fidelity factor. In addition, the antenna bandwidth was surveyed on several volunteers using a wearable measurement setup. It has been found that the averages of measured reflection coefficients in different scenarios are in good agreement with the corresponding simulation results, and the antenna shows stable performance under different practical situations. The proposed antenna takes advantage of a small footprint and body matching, which make it an eligible choice for compact, portable, and wearable head microwave imaging systems.  相似文献   

18.
A compact epsilon‐shaped (ε) ultra‐wideband (UWB) antenna for dual‐wideband circularly polarized (CP) applications has been investigated in this article. It consists of a stepped stub loaded modified annular ring‐shaped radiator and modified CPW ground plane. The ground plane is loaded with two semicircular notches and a spiral‐shaped slot. The impedance bandwidth (IBW) is 97.02% (10.4‐30 GHz) along with an overall footprint of 20 × 20 mm2. The fractional axial ratio bandwidth (3‐dB ARBW) for two wide bands is 38.50% (13.30‐19.64 GHz) and 6.45% (26.25‐28.00 GHz), respectively. The proposed antenna is left‐hand circularly polarized with a peak gain of about 5.09 and 5.14 dB in both 3‐dB ARBW bands. The proposed antenna is dominating other reported CP antenna structures in terms of number of CP bands, 3‐dB ARBW, IBW, peak gain, and dimensions.  相似文献   

19.
A compact monopulse antenna array based on substrate integrated waveguide technology is presented through this article. The design is fabricated on Printed Circuit Board (PCB) technology consisting of a double‐layered 8‐cell array antenna with a slot in the middle‐ground metal used for aperture‐coupling excitation and reducing unwanted spurious emissions from feed network. The Impedance bandwidth and AR bandwidth are enhanced due to optimal feed network, including Rat‐Race coupler to generate sum and difference patterns for mono‐pulse applications operating at 10 GHz. The prototype of the proposed antenna with the size of 124*25 mm2 is fabricated and tested. Measured results compared very well to simulation results obtained by CST microwave studio and show ?10‐dB impedance bandwidth of 4% and ?22 dB null‐depth in difference mode.  相似文献   

20.
In this article, a wideband planar magneto‐electric (ME) tapered slot antenna (TSA) with wide beamwidth both in the E‐plane and H‐plane is investigated. By simply etching slots on the basic TSA, which can function as a combination of magnetic dipole and electric dipole, stable unidirectional patterns with wide beamwidth are obtained. The metal ground plane is further modified to realize wide beamwidth across a wide frequency bandwidth. Moreover, a double‐layer structure is employed to suppress the cross polarization. The measured results show that the proposed antenna can achieve an impedance bandwidth of 51.7% (7.22‐12.25 GHz) with a stable gain of 2.3 dBi, and a pattern bandwidth of 43% (7.8‐12.2GHz) for more than 135° half‐power beamwidth. The measured front‐to‐back (F/B) ratio is more than 15 dB in the pattern bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号