首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a compact wideband microstrip‐to‐microstrip (MS‐to‐MS) vertical transition designed with a slotline stepped‐impedance resonator (SIR) is first presented. Compared with the existing wideband transitions, this proposed transition centered at f0 can tremendously extend its upper stopband via two introduced transmission zeros around 3f0 and 5f0. With the designed equivalent circuit, the working principle is theoretically discussed. To realize the size compactness of this proposed wideband transition, the slotline SIR is replaced by two back‐to‐back connected slotline Y‐junctions. Finally, a prototype wideband transition is simulated and fabricated. A wideband filtering response with its upper stopband up to 6.06 GHz under attenuation better than 15 dB is experimentally achieved as expected in the simulation.  相似文献   

2.
By etching slots in the low‐impedance section of the conventional stepped‐impedance resonator, a novel slotted stepped‐impedance resonator (SSIR) is proposed. As two examples, a fourth‐order bandpass filter (BPF) operating at 1 GHz with a size of 0.078 λg × 0.062 λg and a miniaturized diplexer operating at 0.9/1.57 GHz with a size of 0.054 λ0 × 0.086 λ0 are designed based on the proposed SSIR. The fabricated BPF exhibits a high selectivity and a wide ?30 dB rejection upper stopband from 1.13 f0 to 6.52 f0, while the fabricated diplexer has up to ?60 dB output isolation. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

3.
A wideband wide stopband filter is designed using asymmetric stepped‐impedance resonators (ASIRs) connected to a large open stub. The capacitive open stub and the parallel‐coupled microstrip line are used to achieve the strong couplings for large fractional bandwidth (FBW). For a wide‐stopband performance, the proposed filter uses ASIRs to improve the high‐order spurious resonant frequency. The first and last resonators of the proposed filter are further optimized to suppress the spurious resonant frequency caused by open stub. The final filter has a 70% FBW centered at 4.87 GHz with 20‐dB‐rejection stopband up to 15.78 GHz (approximately 3.24 f0). The measured insertion loss is less than 0.15 dB and the return loss is better than 17 dB.  相似文献   

4.
This article presents a novel multi‐mode microstrip resonator. Using the even‐odd‐mode method, its resonance characteristics are analyzed and the design graphs are given. Each mode equivalent circuit is a λ/4 stepped impedance resonator (SIR), so the proposed resonator has a compact size and the higher harmonics can be tuned in a wide range. Stub–stub coupling is introduced to split two identical modes and produce two transmission zeros (TZs). Then a tri‐band filter operating at 1.5, 2.4, and 3.8 GHz is designed using the proposed resonator. The three center frequencies and bandwidths can be independently controlled. By tuning the impedance and length ratios of the stubs, wide upper stopband is achieved. Finally, the designed filter is fabricated and measured, and the measured results agree well with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:559–564, 2016.  相似文献   

5.
In this study, a filtering power divider (FPD) is proposed by utilizing one T‐shaped tri‐mode stepped‐impedance resonator with input/output coupling structures based on substrate‐integrated suspended line (SISL). The circuit topology and SISL technology are combined together to reach balance in performances such as compact size, wideband, high frequency selectivity, low loss, good in‐band isolation, wide stopband, and self‐packaging so that there are no obvious flaws. Wide bandwidth and two near‐band transmission zeros are contributed by the proposed circuit topology. Good isolation can be obtained by comparing different coupling schemes with one resistor. An additional transmission zero for extending the upper stopband can be achieved by the two closely placed stubs without increasing the size of the design. Low loss and self‐packaging can be realized by SISL technology. For demonstration, a prototype is implemented with the size of 0.5λg × 0.28λg, which exhibits the 1‐dB fractional bandwidth of 26.3%, the frequency selectivity of 0.25/0.37 at the lower/upper edges of the passband, and the insertion loss of 1.1 dB (including transition) at the center frequency (f0) of 3.34 GHz, while the in‐band isolation is higher than 20 dB and the 15‐dB stopband is achieved up to 3.74 f0.  相似文献   

6.
A coupled‐line band‐pass filter (BPF) with T‐shaped stub structure is presented. Five transmission poles within the passband and eight deep transmission zeros (TZs) from 0 to 2f0 (f0 denotes filter's center frequency) are realized through input impedance calculations. With the simple T‐shaped structure, the positions of six TZs can be appropriately adjusted to achieve high frequency selectivity and stopband rejection. For demonstration, a BPF prototype centered at 2.05 GHz is designed and fabricated, whose measured rejection levels are of over 45.5 dB at lower stopband and better than 19.5 dB at upper stopband. The simulation and measurement results are in good agreement, which validates the design idea.  相似文献   

7.
This study presents a wideband bandpass filter (WBBPF) with wide and high stopband suppression by loading a stepped‐impedance resonator (SIR). The prototype of WBBPF is composed of an inverted π‐shaped resonator with T‐shaped resonator and open stub loaded, centrally. Odd‐/even‐mode analysis technique is employed to characterize the resonant properties of this prototype. Then, a SIR is loaded to this filter, asymmetrically, to improve the out‐of‐band performance. For experimental validation, a WBBPF is designed, fabricated, and tested. The measurement results show that the center frequency of WBBPF is located at 5.095 GHz, and the 3‐dB fraction bandwidth is about 71%. Plus, the out‐of‐band suppression with 30‐dB rejection level can be extended to 18.17 GHz.  相似文献   

8.
This article presents two novel resonators, that is, frequency selecting coupling structure loaded stepped‐impedance resonator (FSCSLSIR) and π‐section loaded FSCSLSIR. The resonator behaviors and guidelines are given to design FSCSLSIR dual‐band bandpass filter (BPF) and π‐section loaded FSCSLSIR triband BPF. The proposed dual‐ and triband BPF have very compact sizes of 0.13 λgd × 0.06 λgd and 0.115 λgt × 0.074 λgt, respectively. Moreover, good return loss, low insertion loss, and high band‐to‐band isolation can be observed, and the proposed FSCSLSIR dual‐band BPF has an ultrawide stopband from 5.79 to 36 GHz. The experimental results are in good agreement with the simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:427–435, 2015.  相似文献   

9.
In this study, we propose a stepped‐impedance‐stub loaded interdigital capacitor resonator for design of a dual‐band band‐pass filter with a large bandwidth ratio. The presented resonator has strong and weak couplings in the upper passbands (UPs) and lower passbands (LPs), respectively, so as to form a large upper/lower bandwidth ratio. Adopting a dual‐branch phase‐matched feedline structure can meet the external quality factors required for the UP/LP. Therefore, these two passbands, defined by their respective center frequencies and bandwidths, can be manipulated independently. A four‐pole dual‐band example filter with a lower bandwidth of 20 MHz at 1576 MHz and an upper bandwidth of 200 MHz at 2450 MHz is successfully designed on an YBCO/MgO superconducting wafer. The filter exhibits excellent frequency responses. The upper/LPs show insertion losses below 0.07/0.22 dB and return losses above 15.3/15.3 dB. The stopband rejection is better than 57 dB until the first spurious passband up to 6150 MHz (3.9fL).  相似文献   

10.
Two novel dual‐band microstrip bandpass filters (BPFs) with multiple transmission zeros are proposed in this article. The dual‐band BPFs with second‐order bandpass responses are due to two λ/4 stepped‐impedance resonators (SIRs). Two passbands (center frequency ratio f s/f0 is 2.36) are realized based on the asymmetric SIRs. The transmission zeros near the passbands can be adjusted conveniently using the stopband transmission characteristic of the open/shorted coupled lines. Two planar microstrip dual‐band BPFs (ε r = 2.65, h = 0.5 mm) with four and six transmission zeros are designed and fabricated. High selectivity and good in‐band performances can be achieved in the proposed filters.  相似文献   

11.
A filtering antenna using dielectric strip resonator and parallel microstrip feed line is proposed to achieve compact dielectric size and filtering response without gain reduction. The compact dielectric size is contributed by the dielectric strip resonator with high permittivity operated in the TMδ1 cavity mode, whose electric field distribution along the short side is far less than half‐wavelength distribution. Therefore, the size of the proposed dielectric strip resonator is smaller than the traditional dielectric patch resonator operated in the TM11 cavity mode. Additionally, the parallel placed microstrip line not only can excite the dielectric strip resonator for filtering response without gain reduction, but also can provide one upper‐edge radiation null for frequency selectivity enhancement. Compared with the reported filtering dielectric antennas, the proposed design exhibits the features of compact dielectric size, simple structure and wide stopband. For demonstration, one prototype operating at 4.9 GHz is fabricated, achieves the dielectric size of 0.00078 λ3 0 (λ0 is the wavelength in the free space at the center frequency), the measured peak gain of 7.1 dBi, the 10‐dB impedance matching bandwidth of 4%, the stopband (> 16 dB) up to 1.84 f0, and the cross‐polarization level of 20 dB within 3‐dB beam range.  相似文献   

12.
This article presents a highly selective dual‐passband filter based on stepped‐impedance‐resonator (SIR) and mixed electromagnetic coupling. First, the surface area of the filter is effectively reduced by the triangular topology. Second, four controllable transmission zeros are introduced by source‐load coupling feed and mixed electromagnetic, which increases the selectivity of the filter. Third, a perturbation structure is added to independently control the resonance points of each passband. Finally, the improved defect ground structure (DGS) is integrated to obtain wide stopband rejection. The measured S‐parameters are well agreement with the simulated results, which show that the center frequencies of the two passbands are 2.4 GHz and 5.2 GHz; and the passband insertion losses are 0.85 dB and 1.6 dB; and the relative bandwidths are 14.6% and 5.7%, respectively. Besides, the structure is with six transmission zeros, and 20 dB suppression for the third harmonic and the fourth harmonic are achieved. Compared with the traditional SIR double‐passband filter, this filter has many advantages, such as simple design, small size, small insertion loss, controllable frequency, high selectivity, and high spurious suppression.  相似文献   

13.
A compact low‐cost lowpass filter (LPF) with sharp roll‐off and wide attenuation band using stepped impedance resonator loaded with interdigital fingers and U‐shaped resonator is recommended in this article. The proposed LPF has a cut‐off frequency of 1.2 GHz with a sharp roll‐off 135 dB/GHz and passband insertion loss 0.35 dB. An array of two different shapes of defected ground structures are etched in the ground plane for introducing additional transmission zeroes to enhance the stopband performance. The relative stopband suppression is achieved up to 171% with a suppression factor of 2. The proposed structure is modelled, fabricated, and measured. The measurement results are found to be well‐matched with the simulated ones. Eventually, a high figure of merit of 21 600 is achieved.  相似文献   

14.
Compact planar substrate‐integrated waveguide (SIW) diplexers with wide‐stopband characteristics are presented for the first time based on collaborative multispurious mode suppression techniques including the harmonic staggered technique, centered coupling windows, and offset‐centered output ports. The coupling scheme using common dual‐mode resonator coupled with multiple single‐mode resonators is adopted here to eliminate the T‐junctions for size and loss reduction, and the dual‐mode coupling controlling technique we previously proposed is also employed to allocate the fractional bandwidths (FBWs) of the two channels flexibly based on the FBW design graph. Additionally, by combining the harmonic staggered technique, centered coupling windows, and offset‐centered output ports, good out‐of‐band rejections can be achieved and excellent wide‐stopband characteristics have been implemented intrinsically. Two prototypes including second‐order and third‐order SIW diplexers are synthesized, designed, fabricated, and tested as demonstrations, extending the stopbands to 1.78f1 and 2.04f1 with the rejection levels better than 17.5 and 20 dB, respectively.  相似文献   

15.
In this article, a wide stopband 20 dB harmonically suppressed low‐pass filter (LPF) using novel defected ground structures (DGSs) is proposed. The DGSs has been analyzed as a low pass filter which shows a significant harmonics suppression in the stopband. The lumped parameter equivalent of the DGSs has been developed to show its effectiveness. The modified equivalent circuit model of the filter helps in placing the transmission zero near ?3 dB cutoff frequency. The LPF is designed on a 0.10 λg× 0.09 λg substrate size where λg is guided wavelength at ?3 dB cut‐off frequency (fc) equal to1 GHz. The simulation shows a 20 dB harmonic suppression up to 50 fc. The prototype of the LPF has been developed and with the available vector network analyser, the S‐parameters have been measured upto 20 GHz (20 fc).The state of the art comparison of the LPF shows a high figure of merit equal to 26 250 which is higher than many recently published works.  相似文献   

16.
This paper presents the complete computed aided design approach for the design of H‐plane iris‐coupled bandpass filters with improved stopband performance. Iris‐coupled bandpass filters with mixed (increased and decreased) adjacent resonator widths are proposed for the first time for improvement in the stopband performance. The simulated filter performance shows improved stopband performance and reduced filter dimensions compared with conventional H‐plane uniform corrugated waveguide bandpass filters. ©1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 14–21, 1999.  相似文献   

17.
The folded multiple‐mode resonators with complementary split ring resonator (CSRR), and defected ground structures (DGS) are introduced for notched ultrawideband (UWB) bandpass filter (BPF) design in this article. Using the CSRR, FMRR, notched wide‐band BPF, a notch response can exist in the UWB passband for blocking the interference. Adjusting the size factor of CSRR, the wide tuning ranges of notch frequencies included the desired frequencies of 5.2/5.8 GHz are achieved. The lower insertion loss (0.31 dB), higher rejection level (?48.40 dB), wider bandwidth (FBW 75%), and wider stopband (extended to 2.01 f0 below ?20 dB rejection level) of UWB band at the central frequency f0 = 4.58 GHz are obtained. Second, design a CSRR, DGS, FMRR, tri‐notched UWB filter, the wider bandwidth (3.1–9.8 GHz) with FBW = 126%, lower insertion loss (0.26 dB), and higher rejection level (?44 dB) of UWB band at central frequency f0 = 5.6 GHz are presented. Using the CSRR and interdigital couple, three notch responses can exist in the UWB passband for blocking the interference signals. Adjusting the size factor of CSRR and interdigital couple, the wide tuning ranges of notch frequencies included the desired frequencies of 5.18/6.10/8.08 GHz are achieved. The wide tuning ranges of three notched frequencies cover from 5.0 to 8.4 GHz. It is a simple way to control the notch responses. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:571–579, 2014.  相似文献   

18.
In this paper, a compact novel simple design of ultra‐wide bandpass filter with high out of band attenuation is presented. The filter configuration is based on combining an ultra‐wide band composite right/left‐handed (CRLH) band pass filter (BPF) with simple uni‐planar configuration of complementary split ring resonator (UP‐CSRR). By integrating two UP‐CSRR cells, the ultra‐wideband CRLH filter roll‐off and wide stopband attenuation are enhanced. The filter has 3 dB cutoff frequencies at 3.1 GHz and 10.6 GHz with insertion loss equals 0.7 dB in average and minimum and maximum values of 0.48 dB and 1.05 dB, respectively over the filter passband. Within the passband. The transition band attenuation from 3 dB to 20 dB is achieved within the frequency band 1.9 GHz to 3.1 GHz (48%) at lower cutoff and the frequency band 10.6 GHz to 11.4 GHz (7%) at upper stopband. Moreover, the filter has a wide stopband attenuation >20 dB in frequencies 11 GHz to 13.6 GHz (21%) and ends with 3 dB cutoff frequency at 14.8 GHz. Furthermore, the designed filter size is very compact (23 × 12 mm2) whose length is only about 0.17 λg at 6.85 GHz. The filter performance is examined using circuit modeling, full‐wave simulations, and experimental measurements with good matching between all of them.  相似文献   

19.
In this article, a wideband and spurious‐suppressed differential bandpass filter based on strip‐loaded slot‐line structure is presented. By means of the differential microstrip‐slot‐line‐microstrip transition, the proposed filter has a wideband bandpass filtering response. Simultaneously, the utilization of the strip‐loaded slot‐line extends its upper stop‐band. The proposed bandpass filter has wider upper‐stopband, wideband bandpass response, and intrinsic high common‐mode (CM) suppression. To verify the design concept, one filter example has been designed, fabricated, and measured. It has a differential‐mode (DM) 3‐dB fractional bandwidth of 157% with a low 0.82 dB minimum insertion loss. What's more, it shows a very wide 20 dB DM stop‐band bandwidth of 6.5 f0d. The experienced results are in good agreement with the theoretical and simulated results.  相似文献   

20.
A new multimode resonator (MMR) using composite right‐/left‐handed transmission line (CRLH TL) is proposed and discussed. The CRLH TL structure is constructed by cascading interdigital coupled microstrip line sections on which short‐ended stepped impedance stubs are loaded. Dispersion characteristic of the transmission line structure is obtained using the Bloch–Floquet theory. The resonator, which has multiresonances electrical behaviors, is especially suitable in ultrawideband (UWB) applications. An UWB filter is presented as an illustration. With transmission zeros introduced at upper stopband, the filter has a sharp skirt performance. In addition, rejection level at lower stopband also gets enhanced due to direct current suppression effects of the multimode resonator. The filter prototype is implemented and measured. The measured results validate the theoretical analysis and show that the filter has a sharp skirt and an out‐of‐band rejection level as good as 38 dB. Meanwhile, return loss is better than 16 dB. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:815–824, 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号