首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article reports a novel polarization‐reconfigurable antenna array using the technique of mode combination (MC). It can electronically alter its polarization states between left‐hand circular polarization mode, right‐hand circular polarization mode, and linear polarization (LP) mode. The antenna array consists of 2 × 2 microstrip antenna elements with one L‐slot on each square patch and two PIN diodes located in the slot region. Instead of degenerating circular polarization (CP) and LP modes by exciting different radiation parts of the antenna element, the LP one is combined by orthogonal CP modes generated by adjacent elements of the proposed antenna array. To verify the concept, a prototype is manufactured and tested. Experimental results show that the proposed antenna has an overlapped ?10 dB impedance bandwidth of around 11.2% for both CP modes and the LP one. The realized maximum gains are around 7.5 dB for the CP modes and 5.6 dB for the LP mode, which are satisfactory for wireless local area network in wireless communication systems.  相似文献   

2.
A single layer simple feed reduced side lobe gain‐enhanced microstrip antenna array using higher‐order modes is analyzed and designed in this work. The relationship between the relative magnitude of equivalent magnetic currents and directivity are studied. Modal analysis for rectangular patch is considered for broadside and non‐broadside radiation. Comparative investigations on antenna radiation and impedance characteristics for fundamental and higher‐order modes are presented. It is observed that an array can be designed to operate in TM03 mode for enhanced gain with broadside radiation. Parametric optimization is carried out to attain low side lobe level. The proposed theory is validated by designing and fabricating a single layer single feed 2 × 2 microstrip patch array in the K band operating in TM03 mode. The simulated and measured realized gain of the fabricated TM03 mode array is 16.1 and 15.5 dBi, respectively, at 22 GHz with consistent broadside radiation pattern and linear polarization.  相似文献   

3.
In this letter, the design and fabrication of the linear microstrip array antenna by series fed are presented. The array antenna consists of 16 reflector slot‐strip‐foam‐inverted patch (RSSFIP) antennas. The gain and efficiency of the linear array antenna is 16.6 dBi and 61% at 10 GHz, respectively. The antenna has a bandwidth (BW) of 45% from 8.1 to 12.8 GHz (S11 < ?10 dB) and side lobe level (SLL) of ?25.6 dB across the BW of 19.2% from 9.4 to 10.4 GHz. These are achieved by using a microstrip series fed with defected ground structure (DGS) to feed the patch array antenna. Good agreement is achieved between measurement and simulation results.  相似文献   

4.
针对阵列天线宽带散射缩减设计进行研究,设计了一种基于无源对消技术的低散射阵列天线,该新型微带阵列天线在宽频带内具有双极化低雷达散射截面(RCS, Radar Cross Section)性能;对基于两种散射性能不同的单元组成阵列的RCS性能进行了理论研究,进行了单元的散射幅度和相位对阵列RCS的影响分析;提出了一种加载T型缝隙的新型微带天线结构,该单元结构的辐射性能与散射性能能够进行独立调控和综合优化,该单元与传统微带贴片单元具有相似的辐射特性,并可在宽频带(带内和带外)内与传统微带单元产生有效相位差;将传统微带单元和加载T型缝隙的新型微带单元组成4×4阵列天线,仿真结果表明,提出的阵列天线在3GHz~7GHz(相对带宽80%)频带内实现了同极化RCS缩减,在3.3GHz~7GHz(相对带宽71.8%)频带内实现了交叉极化RCS缩减,缩减峰值分别为16.3dB和36.3dB,带内RCS缩减均值分别为14.1dB 和17.6dB;与传统微带阵列天线相比,提出的阵列天线增益下降小于0.1dB;提出的微带阵列天线具有高效率辐射和宽频带双极化低散射性能,为低散射阵列天线设计提供了新的思路。  相似文献   

5.
Rectangular microstrip patch antenna with circular headed dumbbell shaped defect in ground plane has been studied experimentally for concurrent improvement in its gain, bandwidth and polarization purity in principal and 45° diagonal planes. Around 9–9.5 dBi peak co polarized (CP) gain, 22% impedance bandwidth along with minimum 19–20 dB of CP‐cross polarized (XP) isolation in both principal and 45° diagonal plane are achieved with the present structure. These observed improvements in results from present antenna are justified with physical insight. The present structure is simple and easy to manufacture. The geometry of the defect in ground plane has been shaped judiciously to modulate the fields beneath the patch efficiently for simultaneous improvement of the three parameters. Very close mutual agreement between simulation and measure results are revealed. The present investigation provides an insightful, visualization‐based understanding of concurrent improvement of all these parameters. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:174–181, 2016.  相似文献   

6.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

7.
This article proposes ultra‐miniature microstrip patches with direct and electromagnetically coupled feeding mechanism for wireless communications at 10 GHz. Antenna size reduction is achieved here by loading a modified Minkowski fractal (type‐2) defected ground structure (MFDGS‐II) exactly beneath the radiating patch. The proposed method involves the selection of best DGS configuration through sensitivity analysis of the antenna structure. From different applications point of view, three different designs: a single layer direct fed patch and two electromagnetically coupled fed multi‐layered microstrip patch antennas are proposed here and designed with MFDGS‐II. The resonant frequencies of the antenna designs are reduced in a significant manner incorporating MFDGS‐II without any change in the physical size of the antenna. The prototypes of the proposed antennas are fabricated, and the performance parameters are measured. Compared with other existing structures, with a lower patch size of 0.20 λ0 × 0.15 λ0, the proposed single layered antenna with microstrip feed achieves a patch size reduction up to 67% and an overall volumetric reduction of 84%, respectively. Similarly, the proposed multi‐layered patch with proximity feed exhibits a maximum impedance bandwidth of 600 MHz and the aperture coupled fed patch has a realized gain of 6.2 dBi with radiation efficiency of 91% centered at 10 GHz. All three proposed compact antenna structures are best in three different aspects and have the potential to meet the practical requirements for X‐band portable wireless applications.  相似文献   

8.
The development of a dual‐feed microstrip grid array antenna for either balanced or unbalanced operation to radiate pencil‐beam patterns has been described. As an example, the dual‐feed microstrip grid array antenna on RT/duroid 5880 substrate with a size of 60 × 60 × 0.787 mm3 or 4.8λ × 4.8λ × 0.063λ at 24 GHz were designed and fabricated. The measured results show that the dual‐feed microstrip grid array antenna has achieved excellent performances: 4.85% impedance bandwidth, 9.03% gain bandwidth, and 20.6‐dBi gain at 24.15 GHz as a balanced antenna and 6.05% impedance bandwidth, 7.74% gain bandwidth, and 17.8‐dBi gain at 24.15 GHz as an unbalanced antenna. The dual‐feed microstrip grid array antenna is a suitable antenna candidate for radar and sensor applications.  相似文献   

9.
A hybrid topology optimization method that combines the scalar isotropic material with penalization and the level set method is utilized to achieve the miniaturization of patch antennas while maintaining good radiation and polarization characteristics. In order to achieve this goal, the Heaviside projection filter is applied to obtain topologies that are more complex. Both the radiation power and the reflection coefficient of the antenna are utilized as sub‐objectives. Besides, by setting the radiation patch to be symmetrical, not only the numbers of optimization variables and optimization sub‐objectives are reduced, but also the cross‐polarization level is suppressed effectively, so that the optimization is accelerated. The optimized patch antenna achieves good performance in patch size, impedance matching, radiation pattern, gain, and polarization characteristics. Compared with the reference patch antenna, the patch size of the optimized antenna is reduced by 63%, while the maximum realized gain and efficiency remain basically unchanged, achieving more than 5.9 dBi and 90%, respectively. Due to its very small size patch, the antenna is particularly suitable for compact multi‐antenna and antenna array applications.  相似文献   

10.
This article deals with the design of a broadband cavity‐backed microstrip‐fed wide‐slot antenna array for L‐band applications. For verification purpose, a sample 1 × 4‐element antenna array has been designed, manufactured and tested. Experimental results have shown satisfactory agreement with the simulation. The proposed antenna array exhibits a measured impedance bandwidth of 1.4 GHz (90%) with frequency of 0.85 to 2.25 GHz and the gain is higher than 11 dBi. The designed antenna has small size and low weight and can be fabricated using a low‐cost fabrication process for easy integration with RF circuits and microwave components. This work is useful for some radar applications and radio frequency identification systems.  相似文献   

11.
In this article, a new 2 × 2 circular microstrip antenna array with air dielectric layer for ambient RF energy harvesting has been proposed. Two pairs of arc‐shaped slots located close to the boundary of the circular microstrip patch have been designed for achieving dual‐band response and extending the frequency bandwidth. The antenna has a frequency bandwidth from 1.85 to 1.93 GHz and from 2.0 to 2.1 GHz which can cover GSM‐1800 and UMTS‐2100 bands. At the frequency of 1.89 and 2.05 GHz, the measured gain is 5.3 and 6.6 dBi, respectively, and high gain of 3.8‐9.3 dBi has been achieved over the whole band. Also, a broadband rectifier that can cover all the bandwidths of the antenna array is designed for the rectenna, which has the maximum rectifying efficiency of 53.6%. Finally, a cube device formed of four antenna and four rectifiers is designed to harvest RF energy, whose maximum output DC voltage is 2.3 V and the maximum output power is 4 mW that can drive four LEDs and an electronic watch.  相似文献   

12.
星载合成孔径雷达双极化天线阵研究   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了一种宽带双极化星载SAR有源相控阵天线阵,该天线以TR组件和双极化线阵组成的有源线阵为基础,并根据相控阵天线对雷达信号瞬时带宽的限制条件,选择合适的实时延迟子阵,结合结构安装的要求,构成电气独立的模块。在此基础上,根据雷达对天线孔径大小的需要,通过馈电网络激励拓展成大型有源相控阵天线,该天线可以通过波控灵活的控制和网络的合成,实现多极化、波束扫描、波束赋形和多通道等功能。其中对于双极化辐射天线,分别针对微带贴片天线阵和波导缝隙天线进行了分析和研究,并给出了实验验证结果。微带天线阵采用宽带的双层贴片辐射单元和并馈网络实现大带宽要求,两种正交极化模式分别由共面微带线和缝隙耦合来激励,其馈电网络居于开有耦合缝隙接地板的两侧,实现复杂网络空间安排和降低馈线耦合的功能。对于贴片单元的激励,采用对称、反相馈电和分组优化等方法,有效地提高了极化隔离度和极化纯度;而双极化波导缝隙阵中,以脊波导宽边纵缝谐振阵实现垂直极化,波导窄边非倾斜缝隙阵实现水平极化,在每种线阵中都通过分组馈电、过载技术和辐射/馈电波导一体化设计,实现了宽带和压缩横截面的目的。两种形式的天线阵比较,阵面剖面高度相当,微带阵具有宽带、轻质、易于加工和成本低等优势,而波导缝隙阵则具有高效、高隔离度和低交叉极化等性能,但是其缺点是结构复杂、加工难度大和重量大等。  相似文献   

13.
This article reports the design and development of high power, low cross‐polarization, and high efficiency circularly polarized microstrip patch array antenna at S‐band, proposed for Indian Regional Navigation Satellite System payload. A novel feeding mechanism for truncated corner square patch based on square coaxial line for broadband impedance matching is discussed. Sequential rotation scheme for axial ratio improvement in an array is implemented. High power handling margins in critical regions of square coaxial line for multipaction breakdown is brought out. Measured 19 dB return loss bandwidth of array antenna is 15.6%. Axial ratio of 0.78 dB over global coverage is achieved in the desired frequency band of operation. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

14.
This article presents two compact circularly polarized microstrip antennas with a very wide 3 dB axial ratio bandwidth and triple circularly polarized bands. A hexagonal stub (circular polarization element) along with tuning element in the ground plane is used for achieving wide 3 dB ARBW in antenna‐1, while a novel approach of using a parasitic strip around the circular polarization element is used in antenna‐2 for introducing band elimination notches in the circularly polarized band of antenna‐1. The antenna‐1 has a ?10 dB impedance bandwidth of 12.34% (3.8‐4.3 GHz), 84.02% (4.9‐12 GHz), and 3 dB ARBW of 79.94% (4.9‐10.9 GHz). The antenna‐2 displays circularly polarized band elimination notch characteristics with ?10 dB impedance bandwidth of 24.80% (3.85‐4.94 GHz), 31.72% (6.1‐8.4 GHz), 25.35% (9.3‐12 GHz), and 3 dB ARBW of 4.84% (4.63‐4.86 GHz), 19.08% (6.02‐7.29 GHz), and 5.7% (9.54‐10.1 GHz). Both the antennas are designed and fabricated on FR4 substrate of dimension (0.52 × 0.52 × 0.04)λ0 at a frequency of 7.9 GHz.  相似文献   

15.
In this letter, we present a circular polarization antenna array using the novel slot‐coupling feeding technique. This antenna includes eight elements which are installed in line, each array element is fed by means of two microstrip lines with equal amplitude and phase rotation of 90°. The feeding microstrip lines are coupled to a square patch through a square‐ring slot realized in the feeding network ground plane. With the presence of the slots, this antenna array is able to cover the range of frequency of 3 GHz to 4 GHz. The size of the proposed antenna array is 7λ × 1.8λ × 0.4λ. The measured gain is 15.2 dBi and the bandwidth of S11< ?10 dB is 1 GHz (3–4 GHz, 28%). The antenna array is suited for the WiMAX applications. With the use of slot‐coupling feeding technique, the measured bandwidth for axial ratio < 3 dB is about 24% in the WiMAX frequency band (3.3–3.8GHz). The measured HPBW of the yz planes is larger than 62°. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:567–574, 2016.  相似文献   

16.
In this article, details of a dual band microstrip patch antenna (MPA) array feed for an offset reflector antenna is presented. The main objective of the proposed structure is to achieve low cross‐polarization at Φ = 90° plane in the reflector pattern. Low cross‐polar levels in the reflector pattern are achieved by illuminating the reflector with fields of the proposed dual band feed structure. A centered circular array as the dual band feed structure is proposed in which the central radiating element is a dual mode circular MPA operating at 6 GHz and the surrounding circular ring of eight circular MPA elements operating at 4 GHz in the dominant mode. The dual mode central antenna uses the concept of conjugate field matching for cross‐polarization reduction. TM21 mode is excited at an appropriate ratio with the TM11 mode to achieve the proper field matching at 6 GHz. The radius of the surrounding circular array is varied to obtain cross‐polarization better than ?30 dB at both the resonant frequencies. The offset reflector gain is found to be better than 37 dB with a 2.5 m parabolic reflector and F/D = 0.8 at both the operating frequencies.  相似文献   

17.
In this article, the design and analysis of a double‐ridged conical horn antenna with high gain and low cross polarization for wideband applications is presented. Double‐ridged pyramidal horn antennas have been investigated in many references. There are no papers in the literature which are devoted to design and analysis of double‐ridged conical horn antenna. The designed antenna has a voltage standing wave ratio (VSWR) less than 2.1 for the frequency range of 8–18 GHz. Moreover, the proposed antenna exhibits extremely low cross polarization, low side lobe level, high gain, and stable far‐field radiation characteristics in the entire operating bandwidth. A new technique for synthesizing of the horn flare section is introduced. A coaxial line to circular double‐ridged waveguide transition is introduced for coaxial feeding of the designed antenna. The proposed antenna is simulated with commercially available packages such as CST microwave studio and Ansoft HFSS in the operating frequency range. Simulation results for the VSWR, radiation patterns, and gain of the designed antenna over the frequency band 8–18 GHz are presented and discussed. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

18.
A square dielectric patch (DP) resonator fusing with the bottom substrate is studied for designing low‐profile circularly polarized (CP) antenna. Based on the theoretical investigation using the constructed analysis model, it can be found that the proposed DP resonator possesses a pair of degenerate dominate modes (TM101 and TM011), which can be split by introducing perturbations on the DP resonator and then used to design CP antenna fed by a microstrip line directly. To verify the proposed idea, a 2 × 2 array fed by a dual Marchand balun network is designed and implemented. Reasonable agreement between the measured and simulated results is observed. Experimental results show that a measured impedance bandwidth is 380 MHz (5.18‐5.56 GHz) for |S11| < ?10 dB and the 3‐dB axial ratio bandwidth is 90 MHz (5.32‐5.41 GHz). The measured gain is up to 11.77 dBic with a cross polarization of about ?20 dB in the boresight direction.  相似文献   

19.
Edge feeding of a circular patch antenna by a microstrip line has been achieved by utilizing the circumferential variation of the field which is fixed by loading the patch. However, loading splits the degenerate modes and gives rise to cross‐polarization. Three different techniques are presented to analyze the loaded circular patch antenna. Comparison with the measured results for input impedance and radiation patterns shows good agreement. The concept used here is very general and can be applied to the edge feeding of any ring antenna. © 2001 John Wiley & Sons, Inc. Int J RF and Microwave CAE 11: 74–85, 2001.  相似文献   

20.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号