首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CVD-TiSiN may be promising material for O2 diffusion-barrier films in ultra-large scale integrated (ULSI) circuit applications, especially for dynamic random-access memory (DRAM) capacitors. We developed a method for introducing Si into TiN, which is a common material used for diffusion-barrier films. TiSiN films were deposited by reacting TiCl4, SiH4, and NH3 in a hot-wall CVD reactor. We measured TiSiN film deposition rates, composition, crystal structure, and resistivity as a function of SiH4 partial pressure. Adding Si to TiN converts the TiN film structure from columnar grains to columnar-free structure films, thereby effectively removing the diffusion paths for O2. The resistivity of TiSiN films was increased by adding SiH4 to the reactant gas. With an increase in SiH4 partial pressure up to PsiH4 = 0.8 Torr, the resistivity gradually increased, but for PsiH4 = 1.2 Torr, the phase present in the film was almost SiN and its resistivity jumped up. TiSiN film rapid thermal annealing was performed to evaluate the anti-oxidation performance at the temperature range from 400 to 600 °C in 100 Torr of O2. For an increase the Si concentration up to 4.4 at.% improved anti-oxidation performance of TiSiN films. Flow modulation chemical vapor deposition (FMCVD) was used to create TiSiN films with low Cl concentration and improved anti-oxidation performance.  相似文献   

2.
Y. YinX.H. Fu  H. Ye 《Thin solid films》2011,519(19):6403-6407
Sr0.75Ba0.25Nb2O6 (SBN75) thin films were deposited on silicon substrate with MgO (100) or TiN (100) buffer layer by radio-frequency magnetron sputtering technique. X-ray diffraction confirmed that a 900 °C annealed SBN self-buffer layer introduced before SBN deposition can lead to the highly c-axis orientation of SBN75 thin film on MgO buffer layer. Energy-dispersive spectrometry analysis showed that the SBN75 films had target-film composition transfer and the TiN buffer layer was partially oxidized during SBN growth. The refractive index of SBN films on both MgO/Si and TiN/Si substrates was determined by fitting the measured reflectance curves with Sellmeier dispersion model in the visible region and the micro-structures were studied by scanning electron microscopy. In this paper, the conditions for SBN/MgO/Si treated as waveguide structure were also discussed.  相似文献   

3.
ZnGa2O4 thin film phosphors have been deposited using a pulsed laser deposition technique on Si (1 0 0) and Al2O3 (0 0 0 1) substrates at a substrate temperature of 550 °C with various oxygen pressures 100, 200 and 300 mTorr, and various substrate temperatures of 450, 550 and 650 °C with a fixed oxygen pressure of 100 mTorr. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. Under the different substrate temperatures, ZnGa2O4 thin films show the different crystallinity and luminescent intensity. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular, oxygen pressure, substrate temperature, a kind of substrates. The luminescent spectra show a broad band extending from 350 to 600 nm peaking at 460 nm. The PL brightness data obtained from the ZnGa2O4 films grown under optimized conditions have indicated that the sapphire is one of the most promised substrates for the growth of high quality ZnGa2O4 thin film phosphor.  相似文献   

4.
Junghoon Joo 《Thin solid films》2011,519(20):6892-6895
Amorphous and microcrystalline silicon thin films are used in solar cells as a multi-junction photovoltaic device. Plasma enhanced chemical vapor deposition is used and high deposition rate of a few nm/s is required while keeping film quality. SiH4 is used as a precursor diluted with H2. Electron impact processes give complex interdependent plasma chemical reactions. Many researchers suggest keeping high H/SiHx ratio is important. Numerical modeling of this process for capacitively coupled plasma and inductively coupled plasma is done to investigate which process parameters are playing key roles in determining it. A full set of 67 volume reactions and reduced set are used. Under most of conditions, CCP shows 100 times higher H/SiH3 ratio over ICP case due to its spatially localized two electron temperature distribution. Multi hollow cathode type CCP is also modeled as a 2 × 2 hole array. For Ar, the discharge is well localized at the neck of the hole at a few Torr of gas pressure. H2 and SiH4 + H2 needed higher gas pressure and power density to get a multi hole localized density profile. H/SiH3 was calculated to be about 1/10.  相似文献   

5.
Strontium ruthenate and Bi3.25La0.75Ti3O12 (BLT) layers were grown on Si(100) substrate using pulsed laser deposition technique. Starting from a Sr2RuO4 target, we obtained single phase films composed of Sr4Ru2O9; on these strontium ruthenate electrodes, textured and non-textured BLT were grown at 700 °C. Structural characterizations of these double layers were done by X-ray diffraction, scanning electron microscopy, normal and high-resolution transmission electron microscopy. The Van der Pauw's resistivity measurements indicate that Sr4Ru2O9 can be used as a back electrode. The temperature dependence of the resistivity at low temperatures is , which corresponds to a variable-range hopping mechanism.  相似文献   

6.
较差的光催化产氢效率极大地阻碍了TiO2光催化剂的工业化应用。为此,本文在含有NH4VO3的磷酸盐溶液中,采用等离子体电解氧化(PEO)法制备了多孔TiO2/V2O5复合膜光催化剂,通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、X射线光电子谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对其组成、结构及光吸收性质进行了表征,并采用气相色谱评价了薄膜催化剂的光催化产氢性能,研究了电解液中NH4VO3含量对膜的结构、组成和光催化产氢性能的影响。结果表明:复合膜催化剂主要由锐钛矿和金红石型TiO2组成,具有微孔结构,V2O5主要以无定形形式存在于膜中,与TiO2有很强的相互作用,影响TiO2的晶面间距。研究发现,元素V抑制了TiO2的结晶和金红石型TiO2的形成,扩大了薄膜的光学吸收范围。针对Na2S+ Na2SO3溶液中的光催化产氢性能的研究显示,在质量浓度为1 g/L NH4VO3的电解液中制备的TiO2/V2O5薄膜的光催化活性最高,优于近年来报道的其他光催化剂。光催化重复实验表明,该复合膜催化剂具有较高的稳定性和较为恒定的光催化活性。  相似文献   

7.
Ferromagnetic films of spinel CoFe2O4 have been grown epitaxially on Si(001) using CeO2/YSZ double buffer layers. The heterostructures were built in a single process by pulsed laser deposition with real-time control by reflection high-energy electron diffraction. YSZ and CeO2 grow cube-on-cube on Si(001) and CoFe2O4 grows with (111) out-of-plane orientation, presenting four in-plane crystal domains. The interface with the buffer layers is smooth and the CoFe2O4 surface is atomically flat, with roughness below 0.3 nm. The films are ferromagnetic with saturation magnetization around 300 emu/cm3. The properties signal that CoFe2O4 is a good candidate for monolithic devices based on ferromagnetic insulating spinels.  相似文献   

8.
Ca3Co4O9 thin films are deposited on Al2O3(001) substrates using a sol-gel spin-coating process. X-ray diffraction shows that the film exhibits a single phase of Ca3Co4O9 with the (00l) planes parallel to the film surface. The temperature dependence of magnetic susceptibility showed as expected the existence of two magnetic transitions similar to those observed in bulk samples: a ferrimagnetic and a spin-state transition around 19 and 375 K, respectively. At 5 K the magnetization curves along the c-axis of the Al2O3(001) show that the remanent magnetization and coercive field are close to those obtained for films grown by pulsed laser deposition, which evidences the interest to use such an easy technique to grow complex thin films oxides.  相似文献   

9.
0.5-10 nm-thick single crystal γ-Al2O3 films was epitaxially grown, at high temperature, on Si(001) and Si(111) substrates using electron-beam evaporation techniques. Reflection High Energy Electron Diffraction studies showed that the Al2O3 films grow pseudomorphically on Si (100) up to thickness of 2 nm. For higher thicknesses, a cubic to hexagonal surface phase transition occurs. Epitaxial growth and relaxation were also observed for Si(111). The film surfaces are smooth and the oxide-Si interfaces are atomically abrupt without interfacial layers.  相似文献   

10.
Epitaxial thin films of SnFe2O4 are deposited on sapphire substrate by ablating the sintered SnFe2O4 target with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). X-ray diffraction study reveals that SnFe2O4 films are epitaxial along (222) direction. The optical bandgap of SnFe2O4 film is estimated using transmittance vs. wavelength data and is observed to be 2.71 eV. The presence of hysteresis loop at room temperature in magnetization vs. field plot indicates the ferromagnetic behavior of the film. It is observed that the coercive field and remnant magnetization decrease with increase in temperature.  相似文献   

11.
Epitaxial thin films of a heterostructure with Bi4Ti3O12(BIT)/SrTiO3(ST) were successfully grown with a bottom electrode consisting of La0.5Sr0.5CoO3(LSCO) on MgO(001) substrates using pulsed laser deposition. The grown BIT and ST (001) planes were parallel to the growth surface with the orientation relationship of BIT <110>//ST <010>. In the as-deposited film, the BIT (001) plane appeared to expand to relieve a lattice mismatch with the ST (001) plane. However, annealing for 20-40 min induced the BIT (001) plane to contract horizontally with its c-axis expanding, which was associated with a local perturbation in the layer stacking of the BIT structure. This structural distortion was reduced in the film annealed for 1 h, with restoration of the periodicity of the layer stacking. Correspondingly, the dielectric constant of the as-deposited film was increased from 292 to 411 by annealing for 1 h. In parallel, the film was paraelectric but became more ferroelectric, with the remanent polarization and the coercive field changing from 0.1 μC/cm2 and 14 kV/cm to 1.7 μC/cm2 and 69 kV/cm, respectively.  相似文献   

12.
Z.H. Sun  H.B. Moon  J.H. Cho 《Thin solid films》2010,518(12):3417-3421
We report on the effect of La0.5Sr0.5CoO3 (LSCO) bottom electrode to the dielectric properties of CaCu3Ti4O12 (CCTO) thin films grown on Ir/Ti/SiO2/Si substrates. Compared with the films grown directly on Ir/Ti/SiO2/Si substrates, the dielectric constant has been increased greatly about 100%, and the dielectric loss decreased to lower than 0.2 in the frequency range of 1-100 kHz. The origin has been discussed in details based on the analysis of the X-ray diffraction and impedance spectra measurements. Results of the impedance spectra suggest that the absence of undesired interfacial layer between Ir/CCTO thin films might be one of the major reasons of the improvement of the dielectric properties when the LSCO was introduced as the bottom electrode.  相似文献   

13.
The n-type doped silicon thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) technique at high and low H2 dilutions. High H2 dilution resulted in n+ nanocrystalline silicon films (n+ nc-Si:H) with the lower resistivity (ρ ∼0.7 Ω cm) compared to that of doped amorphous silicon films (∼900 Ω cm) grown at low H2 dilution. The change of the lateral ρ of n+ nc-Si:H films was measured by reducing the film thickness via gradual reactive ion etching. The ρ values rise below a critical film thickness, indicating the presence of the disordered and less conductive incubation layer. The 45 nm thick n+ nc-Si:H films were deposited in the nc-Si:H thin film transistor (TFT) at different RF powers, and the optimum RF power for the lowest resistivity (∼92 Ω cm) and incubation layer was determined. On the other hand, several deposition parameters of PECVD grown amorphous silicon nitride (a-SiNx:H) thin films were changed to optimize low leakage current through the TFT gate dielectric. Increase in NH3/SiH4 gas flow ratio was found to improve the insulating property and to change the optical/structural characteristics of a-SiNx:H film. Having lowest leakage currents, two a-SiNx:H films with NH3/SiH4 ratios of ∼19 and ∼28 were used as a gate dielectric in nc-Si:H TFTs. The TFT deposited with the NH3/SiH4∼19 ratio showed higher device performance than the TFT containing a-SiNx:H with the NH3/SiH4∼28 ratio. This was correlated with the N−H/Si−H bond concentration ratio optimized for the TFT application.  相似文献   

14.
The surface of hollow glass spheres was deposited with a layer of Fe3O4 film in the open air without using ultrasound and toxic reducing reagent NaNO2; the magnetic films of Fe3O4 were characterized by XRD, SEM and EDS. The intactness of the films was remarkably affected by temperature; it is favorable for the hollow glass spheres to be encapsulated completely by the Fe3O4 magnetic films as plating temperature increased at pH 6.7. The films exhibited ferromagnetic behavior.  相似文献   

15.
Phase transformation and morphology evolution of ZrO2/Al2O3/ZrO2 laminate induced by the post-deposition NH3 annealing at 480 °C were studied and the effect on the electrical property of the TiN/ZrO2/Al2O3/ZrO2/TiN capacitor module was evaluated in dynamic random access memory cell. Experimental results indicated N could indeed be incorporated into the dielectric laminate by the low-temperature NH3 annealing, resulting in tetragonal-to-cubic phase transformation and small crystallites in the ZrO2 layers. The C residue and Cl impurity in the ZrO2/Al2O3/ZrO2 laminate, which derived from the dielectric film formation and capping TiN layer deposition, respectively, could also be reduced by the nitridation process. As a result of the better surface morphology and less impurity content, lower dielectric leakage current and longer reliability lifetime were observed for the nitrided ZrO2/Al2O3/ZrO2 capacitor. This study demonstrates the low-temperature NH3 annealing on ZrO2/Al2O3/ZrO2 dielectric can be applicable to the metal-insulator-metal capacitor structure with nitride-based electrode, which brings advantages over mass production-wise property improvements and extends the practical applicability of the ZrO2/Al2O3/ZrO2 dielectric.  相似文献   

16.
NiSix films were deposited using chemical vapor deposition (CVD) with a Ni(PF3)4 and Si3H8/H2 gas system. The step coverage quality of deposited NiSix was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF3 gas from decomposition of Ni(PF3)4 increased. By injecting PF3 gas into the Ni(PF3)4 and Si3H8/H2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 °C is larger than at 180 °C. It caused a decreasing relative deposition rate of Ni to Si. PF3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species.  相似文献   

17.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

18.
Dependence of electrical properties of phase change Ge1Sb2Te4 thin film on structural transformation was investigated. The electrical resistivity of the film decreases with increasing annealing temperature with a steep drop at ∼ 230 °C (the second crystallization temperature), at which the structure of Ge1Sb2Te4 changes from face-centered cubic to trigonal state. The steep drop of resistivity at the second crystallization temperature is mainly due to the increase of hole density within the p-type film, according to Hall measurement. The crystallization process has been followed by in situ resistance measurement at various annealing temperatures. Transmission electron microscope and atomic force microscope were also employed to study the film.  相似文献   

19.
Organic-inorganic nanocomposites are gaining importance in the recent times as polymer electrolyte membranes. In the present work, composites were prepared by combining nano sized Co3O4 and poly(vinyledene fluoride) (PVDF), using spin coating technique. The surface of the PVDF/Co3O4 system characterized through field emission scanning electron microscopy (FESEM) revealed a porous structure of the films. The nanoparticles tend to aggregate on the surface and inside the pores, leading to a decrease in the porosity with an increase in Co3O4 content. Co3O4 nanoparticles prohibit crystallization of the polymer. Differential scanning calorimetry (DSC) studies revealed a decrease in crystallinity of PVDF/Co3O4 system with an increase in the oxide content. Magnetic property studies of the composite films revealed that with an increase in Co3O4 content, the saturation magnetization values of the nanocomposites increased linearly, showing successful incorporation of the nanoparticles in the polymer matrix. Further, ionic conductivity of the composite films was evaluated from electrochemical impedance spectroscopy. Addition of Co3O4 nanoparticles enhanced the conductivity of PVDF/Co3O4 system.  相似文献   

20.
Cu2ZnSnS4 films were grown on Si (100) by vacuum evaporation using elemental Cu, Sn, S and binary ZnS as sources. X-ray diffraction patterns of films grown at different substrate temperatures indicated that polycrystalline growth was suppressed and the orientational growths were relatively induced in a film grown at higher temperatures. Tetragonal structure of Cu2ZnSnS4 films was confirmed by studying RHEED patterns. The existence of c-axis ([001] direction) growth, two kinds of a-axis (〈100〉 direction) growth and four kinds of {112} twins which can be classified as two symmetrical pairs is proposed. Broad emissions at around 1.45 eV and 1.31 eV were observed in the photoluminescence spectrum measured at 13 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号