首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
The mathematical models of evaporative fluid coolers and evaporative condensers are studied in detail to perform a comprehensive design and rating analysis. The mathematical models are validated using experimental as well as numerical data reported in the literature. These models are integrated with the fouling model presented in an earlier paper, using the experimental data on tube fouling. In this paper, we use the fouling model to investigate the risk based thermal performance of these evaporative heat exchangers. It is demonstrated that thermal effectiveness of the evaporative heat exchangers degrades significantly with time indicating that, for a low risk level (p=0.01), there is about 66.7% decrease in effectiveness for the given fouling model. Furthermore, it is noted that there is about 4.7% increase in outlet process fluid temperature of the evaporative fluid cooler. Also, a parametric study is performed to evaluate the effect of elevation and mass flow rate ratio on typical performance parameters such as effectiveness for rating calculations while surface area for design calculations.  相似文献   

2.
The effect of air inlet humidity condition on the air-side heat transfer and pressure drop characteristics for an inclined brazed aluminum heat exchanger has been investigated experimentally. For a heat exchanger with a louver angle of 27°, fin pitch of 2.1 mm and flow depth of 27.9 mm, a series of tests are conducted for the air-side Reynolds numbers of 80–400, with variation of inlet humidity condition. The heat transfer data are obtained for wet condition only and the pressure drop data are measured for both dry and wet conditions. The inlet air temperature and relative humidity range are 12 °C and 60–90%, respectively. The inclination angles (θ) from the vertical position are 0, 14, 45, and 67° clockwise (leeward direction). The inclination angles affect moderately the sensible heat transfer coefficient for wet condition, and the pressure drops for both dry and wet conditions increase systematically with the inclination angle. The heat transfer and pressure drop characteristics under wet condition are not influenced substantially by the air inlet humidity for θ 45°. The effect of the louver directions at the inlet and outlet of the inclined heat exchanger on the performance is also addressed.  相似文献   

3.
CO2 is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO2 in the diverging sections of rectangular converging–diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076°, 0.153°, 0.306° and 0.612°. This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6–9 MPa, 20–37 °C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 °C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306°, decompression curves for inlet temperature above 35 °C approached IHE curves. For divergence angles smaller than 0.306° or for nozzles with inlet temperature below 35 °C, IHE had no solution.  相似文献   

4.
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behavior of capillary tube–suction line heat exchangers considering metastable region and separated flow has been developed in Part I of this paper. The developed numerical model allows analysis of aspects such as geometry, type of fluid, critical or non-critical flow conditions and metastable region. The accuracy of the detailed simulation model is demonstrated in this part (Part II) of the paper by comparing simulation results with a wide range of steady state experimental data from the technical literature, which include the refrigerant mass flow rate, outlet suction line temperature, and temperature profile along concentric and lateral capillary tube–suction line heat exchangers. Of the 196 data points evaluated for mass flow rate 96.4% are within an error of ±15%, 81.1% are within ±10% with a mean deviation of ±6.3%. Of the 143 data points evaluated for outlet suction line temperature 89.5% are within an error of ±2 °C, with a mean deviation of ±0.98 °C.The numerical results obtained are used to understand the refrigerant flow behavior inside non-adiabatic capillary tubes. Some divergence problems in the numerical solution process is found to be the discontinuity in non-adiabatic capillary tube flow characteristics caused by re-condensation of the refrigerant within the heat exchanger zone; this aspect needs special attention while modeling the non-adiabatic capillary tube flow. Other important parameter to be evaluated experimentally with special care is the capillary tube internal diameter due to its strong influence on the refrigerant flow results (results of any study based on the nominal diameter are to be used with caution).  相似文献   

5.
The objectives of this paper are to develop experimental correlations of heat transfer for enhanced tubes used in a falling film condenser, and to provide a guideline for optimum design of the falling film condenser with a high condensing temperature of 59.8 °C. Tests are performed for four different enhanced tubes; a low-fin and three Turbo-C tubes. The working fluid is HFC134a, and the system pressure is 16.0 bar. The results show that the heat transfer enhancement of low-fin tube, Turbo-C (1), Turbo-C (2) and Turbo-C (3) ranges 2.8–3.4 times, 3.5–3.8 times, 3.8–4.0 times and 3.6–3.9 times, respectively, compared with the theoretical Nusselt correlation. It was found that the condensation heat transfer coefficient decreased with increasing the falling film Reynolds number and the wall subcooling temperature. It was also found that the enhanced tubes became more effective in the high wall subcooling temperature region than in the low wall subcooling temperature region. This study developed an experimental correlation of the falling film condensation with an error band of ±5%.  相似文献   

6.
The present paper discusses (a) the analysis of a wire-on-tube condenser under varying operating conditions of free convection using FEM, and (b) experimental verification of the performance of two wire-on-tube condensers in a retrofitted domestic refrigerator using refrigerant R-134a. The study is motivated by the desire to investigate if the wire-on-tube condensers used in R-12 based refrigerators could be used in a modified refrigerator using R-134a refrigerant. Experiments were conducted in a climate chamber under controlled and varying ambient temperatures and mass flow rates to determine the locations where phase change occurs and the degree of subcooling achieved. In terms of initial and final phase change point locations the predicted results agree with the experimental results to within ±10%. The analysis and the experiments also lead to the information about the adequacy of the number of tubes for complete condensation of the refrigerant vapour under given operating conditions. The methodology can be used as a design tool for the design of wire-on-tube condenser of a small refrigerator as well as the suitability of specific decommissioned condensers for use in a retrofitted refrigerator. It also indicates that R-12 based refrigerators using wire-on-tube condensers retrofitted with R-134a compressor and refrigerant deserve and warrant further studies for adoption.  相似文献   

7.
This paper presented a novel autocascade refrigeration cycle (NARC) with an ejector. In the NARC, the ejector is used to recover some available work to increase the compressor suction pressure. The NARC enables the compressor to operate at lower pressure ratio, which in turn improves the cycle performance. Theoretical computation model based on the constant pressure-mixing model for the ejector is used to perform a thermodynamic cycle analysis for the NARC with the refrigerant mixture of R23/R134a. The effects of some main parameters on cycle performance were investigated. The results show the NARC has an outstanding merit in decreasing the pressure ratio of compressor as well as increasing the COP. For NARC operated at the condenser outlet temperature of 40 °C, the evaporator inlet temperature of −40.3 °C, and the mass fraction of R23 is 0.15, the pressure ratio of the ejector reaches to 1.35, the pressure ratio of compressor is reduced by 25.8% and the COP is improved by 19.1% over the conventional autocascade refrigeration cycle.  相似文献   

8.
This paper presents a steady-state model for predicting the performance of vapour-compression liquid chillers over a wide range of operating conditions. The model overcomes the idealisations of previous models with regard to modelling the heat exchangers. In particular, it employs an elemental NTU- methodology to model both the shell-and-tube condenser and evaporator. The approach allows the change in heat transfer coefficients throughout the heat exchangers to be accounted for, thereby improving both physical realism and the accuracy of the simulation model. The model requires only those inputs that are readily available to the user (e.g. condenser inlet water temperature and evaporator water outlet temperature). The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle. The methodology employed within the model also allows the performance of chillers using refrigerant mixtures to be modelled. The model is validated with data from one single screw chiller and one twin-screw chiller where the agreement is found to be within ±10%.  相似文献   

9.
板式蒸发式冷凝器的性能实验   总被引:1,自引:0,他引:1  
对板式蒸发式冷凝器进行的性能测试结果表明,在一定的结构形式下,存在最佳的入口风速和喷淋密度。同时根据实验结果拟合出板外水膜一空气间的传质系数关系式。另外,对基于同一蒸气压缩式制冷机组的水平管式和板式蒸发式冷凝器性能进行试验对比。结果表明,在测试条件下,采用板式蒸发式冷凝器的空调冷凝系统能效比提高了2.01%~3.1%,热流密度提高了20%~26%;与管式蒸发式冷凝器相比,板式蒸发式冷凝器换热器体积有所减小,而风机阻力和水泵功率略有增加。  相似文献   

10.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

11.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

12.
Evaporative cooling systems are commonly used in countries where the climate is hot and dry, as found in most zones of India and Australia. The potential energy savings envisaged by replacing conventional refrigerated systems by evaporative systems is ≈75%. Indirect systems can achieve comfort conditions similar to refrigerated systems in climatic zones where the wet bulb temperature is usually <25°C. The comfort afforded by indirect evaporative systems is superior to that achieved by direct evaporative systems. An 8.5 ton indirect-direct evaporative cooling system has been fabricated and tested and its performance compared with a computer prediction. The system's scope for use in India and Australia is analysed.  相似文献   

13.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

14.
Evaluation of standing-wave thermoacoustic cycles for cooling applications   总被引:1,自引:0,他引:1  
The most promising applications for standing-wave thermoacoustic cooling were investigated from the perspective of the ratio of coefficient of performance (COP) to the reversible COP or COPR. A design optimization program based on the thermoacoustic simulation program known as DELTAE was developed. The program was applied to two standing-wave thermoacoustic cooler configurations in order to determine the best possible COPRs for various temperature spans between hot-side and cold-side stack-end temperatures. It was found that the COPR of standing-wave thermoacoustic coolers increases with temperature span and reaches a maximum for temperature lifts around 80 °C. Analysis of the results and the losses clearly shows that the efficiency of these systems may be good for refrigeration, but not for air-conditioning and cryogenic cooling. The COPRs determined from measurements for various thermoacoustic coolers developed so far show similar trends, and generally support the optimization results.  相似文献   

15.
For providing good performance of dehumidifier and regenerator with certain dimensions, a new type of internally cooled/heated dehumidifier/regenerator based on the plate–fin heat exchanger (PFHE) was designed. To investigate the behavior of the new equipment, an experimental setup was established in an environment chamber with regulable temperature and humidity air. By the internally cooled dehumidification testing, effects of the cooling water temperature, the air flow rate and the desiccant temperature on the dehumidification performance and the cooling efficiency were presented. The behavior of internally cooled dehumidification process was compared with that of the adiabatic dehumidification process. The results suggested that the cooling efficiency decreased with the increasing of the cooling water temperature and desiccant with low temperature could bring more mass transfer coefficients. There is an optimal air flow rate to achieve the maximum absolute humidity decrease of the air. By the internally heated regeneration testing, effects of the air flow rate and the desiccant inlet temperature on the regeneration performance and air outlet parameters were discussed and also compared with those of the adiabatic regeneration process. It was concluded that the regeneration efficiency of internally heated regeneration was more than that of the adiabatic regeneration, and the internally heated regenerator could offer better thermal performance.  相似文献   

16.
Application of hydrocarbon mixtures enables the creation of simple, reliable and durable refrigerating and cryogenic Joule–Thomson micro coolers for the temperature range of −73 to −183 °C. The temperature, thermal, power and hydraulic performances of a series of prototypes are presented. The results of tests demonstrate that small, single stage, sealed, lubricated compressors can be applied to these purposes. The start up and steady operation hydraulic performance of those machines are quite similar to the performance of domestic refrigerators. The last, together with the fact that in the studied micro coolers the lubricated compressors are used at temperatures down to −183 °C, ensures a large resource of operation. That is just the reason that holds out a hope for prospects in a broad field of applications for the studied prototypes, despite their lower power performances in contrast to gas micro coolers.  相似文献   

17.
Detailed 2D CFD calculations for vapour flow field and rate of condensation are carried out for a geometry similar to a real shell-and-tube condenser with 100 tubes, with condensation on the shell-side. The differences in vapour flow behaviour are investigated for pure R22 and for a binary mixture of R32 and R134a, which has a gliding temperature difference of 5.5 K. It is shown that, the flow field for a zeotropic mixture is significantly different from that for a pure fluid. The nature of the mixture flow causes the vapour and condensate to flow counter-currently in part of the condenser. Adjustments of the inlet design turn out to influence the rate of heat transfer by up to 24% for the conditions tested, with greater influence on heat transfer for lower driving forces.  相似文献   

18.
A finite element model was used to simulate single-phase flow of R-22 through flexible short-tubes. The numerical model included the fluid-structure interaction between the refrigerant and the deformation of the short-tube as upstream pressure was varied. The finite element model was developed using a commercially available finite element package. Short-tubes with moduli of elasticity ranging from 5513 to 9889 kPa were studied. Four upstream and downstream pressures were applied and the upstream subcooling was held at a constant value of 16.7 °C. Mass flow rates from the numerical model were compared to available published experimental results. The study showed that upon deformation the short-tube resembled the shape of a converging-diverging nozzle. Both tube inlet and outlet had a chamfered-like shape after deformation which reduced the pressure drop at the tube inlet. The smaller the modulus of the tube, the larger the chamfered-like angle at the inlet and the higher the pressure drop along the tube due to the higher tube contraction. The results illustrated that as the upstream pressure was increased by 45%, there was almost a 60% decrease in the flow area. The more flexible (5513 kPa) short-tube restricted the mass flow rate more than the most rigid (9889 kPa) short-tube used in this study. The mass flow rates estimated with the finite element model were as much as 14% higher than those from experimental results reported in the literature.  相似文献   

19.
This paper presents a study of flow regimes, pressure drops, and heat transfer coefficients during refrigerant condensation inside a smooth, an 18° helical micro-fin, and a herringbone tubes. Experimental work was conducted for condensing refrigerants R-22, R-407C, and R-134a at an average saturation temperature of 40 °C with mass fluxes ranging from 400 to 800 kg m−2 s−1, and with vapour qualities ranging from 0.85 to 0.95 at condenser inlet and from 0.05 to 0.15 at condenser outlet. These test conditions represent annular and intermittent (slug and plug) flow conditions. Results showed that transition from annular flow to intermittent flow, on average for the three refrigerants, occurred at a vapour quality of 0.49 for the smooth tube, 0.29 for the helical micro-fin tube, and 0.26 for the herringbone tube. These transition vapour qualities were also reflected in the pressure gradients, with the herringbone tube having the highest pressure gradient. The pressure gradients encountered in the herringbone tube were about 79% higher than that of the smooth tube and about 27% higher than that of the helical micro-fin tube. A widely used pressure drop correlation for condensation in helical micro-fin tubes was modified for the case of the herringbone tube. The modified correlation predicted the data within a 1% error with an absolute deviation of 7%. Heat transfer enhancement factors for the herringbone tube against the smooth tube were on average 70% higher while against the helical micro-fin tube it was 40% higher. A correlation for predicting heat transfer coefficients inside a helical micro-fin tube was modified for the herringbone tube. On average the correlation predicted the data to within 4% with an average standard deviation of 8%.  相似文献   

20.
Microchannel (or mini-channel) heat exchangers are drawing more attention because of the potential cost reduction and the lower refrigerant charge. Serpentine microchannel heat exchangers are even more compact because of the minimized headers. Using the serpentine microchannel condenser, some thermodynamically good but flammable refrigerants like R-290 (Propane) can be extended to more applications. To well size the serpentine microchannel condensers, a distributed-parameter model has been developed in this paper. Airside maldistribution is taken into account. Model validation shows good agreement with the experimental data. The predictions on the heating capacity and the pressure drop fall into ±10% error band. Further analysis shows the impact of the pass number and the airside maldistribution on the condenser performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号