首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the developments in multimedia and other real-time group applications, the question of how to establish multicast trees satisfying Quality-of-Service (QoS) requirements is becoming a very important problem. In this paper, multicast routing and wavelength assignment with delay constraint (MCRWA-DC) in wavelength division multiplexing (WDM) networks with sparse wavelength conversions is studied. We propose a colored multigraph model for the temporarily available wavelengths. Based on this colored multigraph model, two heuristic algorithms are proposed to solve the MCRWA-DC problem. The proposed algorithms have the following advantages:(1) finish multicast routing and wavelength assignment in one step; (2) the total cost of the multicast tree is low; (3) the delay from the source node to any multicast destination node is bounded; and (4) locally minimize the number of wavelength conversions and the number of different wavelengths used to satisfy a multicast request. Simulation results show that the proposed algorithms work well and achieve satisfactory blocking probability.  相似文献   

2.
There are two steps to establish a multicast connection in WDM networks: routing and wavelength assignment. The shortest path tree (SPT) and minimum spanning tree (MST) are the two widely used multicast routing methods. The SPT method minimizes the delay from the source to every destination along a routing tree, and the MST method is often used to minimize the network cost of the tree. Load balancing is an important objective in multicast routing, which minimizes the maximal link load in the system. The objective of wavelength assignment is to minimize the number of wavelengths used in the system. This paper analyzes the performance of the shortest path tree (SPT) and minimum spanning tree (MST) methods in the tree of ring networks, regarding the performance criteria such as the delay and network cost of the generated routing trees, load balancing, and the number of wavelengths required in the system. We prove that SPT and MST methods can not only produce routing trees with low network costs and short delays, but also have good competitive ratios for the load balancing problem (LBP) and wavelength assignment problem (WAP), respectively  相似文献   

3.
In general, multicast routing and wavelength assignment (MC-RWA) can be subdivided in routing and wavelength assignment issues in wavelength-division multiplexing (WDM) mesh networks. Previous studies on WDM multicast have mainly focused on WDM multicast routing. The multicast wavelength assignment problem is studied in this paper. A unicast routing path can be established by a lightpath in an all-optical network. However, in the multicasting case, a multicast routing tree can be established by a single light-tree or several lightpaths, or a combination of several light-trees and lightpaths. We propose a wavelength assignment algorithm for finding an optimal combination of lightpaths and light-trees to construct a newly required multicast session. First of all, two cost functions are given to evaluate the establishing cost for each feasible wavelength, and then find a set of wavelengths that covers all destinations with the minimal cost using Integer Linear Programming (ILP) formulation. We focus on maximizing the total number of users served in a multicast session and the network capacity. The simulation results show that the proposed algorithm can improve system resource utilization and reduce the blocking probability compared with the First-Fit algorithm.This research was partially supported by the Grant of National Science Council, R.O.C. (NSC 94-2745-E-155-007-URD).  相似文献   

4.
In this work, we study dynamic provisioning of multicast sessions in a wavelength-routed sparse splitting capable WDM network with an arbitrary mesh topology where the network consists of nodes with full, partial, or no wavelength conversion capabilities and a node can be a tap-and-continue (TaC) node or a splitting and delivery (SaD) node. The objectives are to minimize the network resources in terms of wavelength-links used by each session and to reduce the multicast session blocking probability. The problem is to route the multicast session from each source to the members of every multicast session, and to assign an appropriate wavelength to each link used by the session. We propose an efficient online algorithm for dynamic multicast session provisioning. To evaluate the proposed algorithm, we apply the integer linear programming (ILP) optimization tool on a per multicast session basis to solve off-line the optimal routing and wavelength assignment given a multicast session and the current network topology as well as its residual network resource information. We formulate the per session multicast routing and wavelength assignment problem as an ILP. With this ILP formulation, the multicast session blocking probability or success probability can then be estimated based on solving a series of ILPs off-line. We have evaluated the effectiveness of the proposed online algorithm via simulation in terms of session blocking probability and network resources used by a session. Simulation results indicate that our proposed computationally efficient online algorithm performs well even when a fraction of the nodes are SaD nodes.  相似文献   

5.
Efficient routing and wavelength assignment for multicast in WDMnetworks   总被引:1,自引:0,他引:1  
The next generation multimedia applications such as video conferencing and HDTV have raised tremendous challenges on the network design, both in bandwidth and service. As wavelength-division-multiplexing (WDM) networks have emerged as a promising candidate for future networks with large bandwidth, supporting efficient multicast in WDM networks becomes eminent. Different from the IP layer, the cost of multicast at the WDM layer involves not only bandwidth (wavelength) cost, but also wavelength conversion cost and light splitting cost. It is well known that the optimal multicast problem in WDM networks is NP-hard. In this paper, we develop an efficient approximation algorithm consisting of two separate but integrated steps: multicast routing and wavelength assignment. We prove that the problem of optimal wavelength assignment on a multicast tree is not NP-hard; in fact, an optimal wavelength assignment algorithm with complexity of O(NW) is presented. Simulation results have revealed that the optimal wavelength assignment beats greedy algorithms by a large margin in networks using many wavelengths on each link such as dense wavelength-division-multiplexing (DWDM) networks. Our proposed heuristic multicast routing algorithm takes into account both the cost of using wavelength on links and the cost of wavelength conversion. The resulting multicast tree is derived from the optimal lightpaths used for unicast  相似文献   

6.
This paper investigates several problems associated with optical multicast routing and wavelength assignment in sparse-splitting optical networks for interactive real-time media distribution. Unfortunately, the constrained multicast routing with optimized wavelength assignment leads to NP-complete condition. Thus, in this paper, a virtual-node-based multicast routing algorithm is first proposed to satisfy the requirements of interactive real-time multicasting as well as the constraints from underlying optical networks. For the constructed multicast tree, we then associate an effective wavelength assignment algorithm. The experimental results show that the proposed algorithm combination performs well in terms of (1) the wavelength channel cost, (2) the maximum variation of inter-destination node delays, (3) the signal quality, and (4) the number of wavelength conversions.  相似文献   

7.
如何在缺乏全局信息的条件下构建安全可靠的组 播树,是智能光网络分域管理后引入的一个新问 题。针对此问题,通过建立新型的多域智能光网络超图模型,在考虑物理或攻击损伤的约束 条件下,利用 基于超路径的域间超树构建方法,结合K最短路径策略,提出了 一种基于超图模型的多域ASON损伤感知 组播路由算法,并进行了实例分析。本文算法在完成多域组播路由建立与波长分配的同时, 具有较低的时间复杂度。通过测量K值、组播规 模、波长数量及分配策略、域数量对网络平均连接阻塞率的影响,实验结果表明,本文算法 是有效的且取得了较好的阻塞性能,同时建议多域ASON组播规模大小应与域的数量保持一 定的比例均衡。  相似文献   

8.
Protecting multicast sessions in WDM optical mesh networks   总被引:8,自引:0,他引:8  
Recent advances in wavelength-division-multiplexing (WDM) technology are expected to facilitate bandwidth-intensive multicast applications. However, a single fiber (bundle) cut on such a network can disrupt the transmission of information to several destination nodes on a "light tree"-based multicast session. Thus, it is imperative to protect multicast sessions e.g., by reserving resources along backup trees. We show that, if a backup tree is directed-link-disjoint to its primary counterpart, then data loss can be prevented in the event of any single link failure. We provide mathematical formulations for efficient routing and wavelength assignment (RWA) of several multicast sessions (including their backup trees for dedicated protection) at a globally optimum cost. We present these formulations for networks equipped with two kinds of multicast-capable switch architectures: one using the opaque (O-E-O) approach and the other using transparent (all-optical) approach. We expand our formulations to accommodate sparse splitting constraints in a network, in which an optical splitter has limited splitting fanout and each node has a limited number of such splitters. We develop a profit-maximizing model that would enable a network operator to be judicious in selecting sessions and simultaneously routing the chosen ones optimally. We illustrate the solutions obtained from solving these optimization problem formulations for a representative-size network.  相似文献   

9.
光组播路由代价与波长使用量的联合优化方法   总被引:1,自引:1,他引:0  
为解决光组播路由中组播中路由代价和波长资源消耗单一化造成的组播路树路由的代价过高问题,在分光节点约束条件下,提出了光组播路由代价与波长使用量联合优化的长路优先(LPF)方法和短路优先(SPF)方法。算法通过检查最小光组播树是否存在节点分光约束的问题,根据设置的波长使用代价控制因子,使LPF或SPF的路由代价和波长使用量最小。LPF方法首先选择组播树最长路径或新波长通道重路由受分光约束的目的节点,SPF方法先选择组播树中最短路径或新波长通道重路由受分光约束的目的节点,仿真结果表明,本文提出的两种联合优化方法都能实现路由代价较低和波长需求较少的目的。  相似文献   

10.
We study the problem of wavelength assignment for multicast in order to maximize the network capacity in all-optical wavelength-division multiplexing networks. The motivation behind this work is to minimize the call blocking probability by maximizing the remaining network capacity after each wavelength assignment. While all previous studies on the same objective concentrate only on the unicast case, we study the problem for the multicast case. For a general multicast tree, we prove that the multicast wavelength assignment problem of maximizing the network capacity is NP-hard and propose two efficient greedy algorithms. We also study the same problem for a special network topology, a bidirectional ring network, which is practically the most important topology for optical networks. For bidirectional ring networks, a special multicast tree with at most two leaf nodes is constructed. Polynomial time algorithms for multicast wavelength assignment to maximize the network capacity exist under such a special multicast tree with regard to different splitting capabilities. Our work is the first effort to study the multicast wavelength assignment problem under the objective of maximizing network capacity.  相似文献   

11.
Given a sparse‐splitting wavelength‐division multiplexing network with no wavelength converter, we study a group multicast problem that is how to transmit a number of multicast streams from the video server to multiple destinations simultaneously. To avoid the situation that the wavelengths are used up by the first few requests, one wavelength is available for each multicast request. Hence, some of destinations may not be included in the multicast trees because of the lack of wavelengths. Our goal is to construct a number of light trees with conflict‐free wavelengths for multiple requests so that the number of served clients is maximized. This problem is named as the revenue‐maximized and delay‐constrained group multicast routing problem. We first determine a set of multicast trees with the maximum number of served clients, then followed by the wavelength assignment to allocate the minimum number of wavelengths to the resulting trees. In this study, we propose two Integer Linear Programming ILP‐based algorithms for determining the optimal solutions for the light‐tree construction problem and the wavelength assignment problem, respectively. For large‐scale networks, two heuristics are introduced to solve the light‐tree construction problem approximately. A set of simulations are also provided for comparing performances of our algorithms against the other published methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this article we study the multicast routing problem in all-optical WDM networks under the spare light splitting constraint. To implement a multicast session, several light-trees may have to be used due to the limited fanouts of network nodes. Although many multicast routing algorithms have been proposed in order to reduce the total number of wavelength channels used (total cost) for a multicast session, the maximum number of wavelengths required in one fiber link (link stress) and the end-to-end delay are two parameters which are not always taken into consideration. It is known that the shortest path tree (SPT) results in the optimal end-to-end delay, but it can not be employed directly for multicast routing in sparse light splitting WDM networks. Hence, we propose a novel wavelength routing algorithm which tries to avoid the multicast incapable branching nodes (MIBs, branching nodes without splitting capability) in the shortest-path-based multicast tree to diminish the link stress. Good parts of the shortest-path-tree are retained by the algorithm to reduce the end-to-end delay. The algorithm consists of tree steps: (1) a DijkstraPro algorithm with priority assignment and node adoption is introduced to produce a SPT with up to 38% fewer MIB nodes in the NSF topology and 46% fewer MIB nodes in the USA Longhaul topology, (2) critical articulation and deepest branch heuristics are used to process the MIB nodes, (3) a distance-based light-tree reconnection algorithm is proposed to create the multicast light-trees. Extensive simulations demonstrate the algorithm’s efficiency in terms of link stress and end-to-end delay.  相似文献   

13.
We have developed a new layered-routing approach to address the problem of all-optical multicast over wavelength-routed wavelength division multiplexing (WDM) networks. We model the WDM network as a collection of wavelength layers with sparse light- splitting (LS) and wavelength conversion (WC) capabilities. We apply the degree constraint technique to solve the problem. The approach is capable of completing multicast routing and wavelength assignment (MCRWA) in one step. We propose two generic frameworks to facilitate heuristic development. Any heuristic that is derived from either Prim’s or Kruskal’s algorithm can be easily imported to solve the MCRWA problem. One example is given for each framework to demonstrate heuristic development. Extensive simulations were carried out to measure the performance of heuristics developed from the frameworks. The results show that the STRIGENT scheme is suitable for hardware design and it is advisable to deploy light splitters and wavelength converters to the same node for better performance.  相似文献   

14.
WDM疏导网络中一种新的多播业务路由算法   总被引:8,自引:6,他引:2  
研究了波分复用(WDM)网状网中动态多播业务量疏导,提出一种新的辅助疏导模型,其可以描述当前网络资源状况和节点分光特点,并动态更新.进而提出一种有效的多播业务量疏导启发式算法(MGA),将业务的多播选路和波长分配同时完成.仿真表明,该算法在波长连续性限制、网络波长和节点收发器数目有限的情况下,具有较低网络阻塞率.  相似文献   

15.
对无波长变换能力的波分复用(WDM)疏导网络中的组播路由和波长分配(MRWA)问题进行了研究,提出了动态组播流量疏导算法(DMTGA)。这种算法根据当前网络资源使用情况,结合流量疏导和负载均衡,对链路权重进行动态配置,构建满足组播业务请求带宽需求的组播树。在不同的网络负载下对算法进行仿真,对比分析了DMTGA对业务请求接入率、平均网络资源利用率和全网负载分布的影响。  相似文献   

16.
杨海 《电讯技术》2021,61(5):621-626
针对无线网络中资源受限的组播路由问题,考虑网络节点的节点度限制和网络链路的带宽约束,以最小化组播路由开销为目标,提出了一种二进制编码方式的基于灰狼优化算法的组播路由策略.在给定的网络拓扑下,基于灰狼优化算法的组播路由策略可以迅速找到一棵包含源和目的节点的最小开销组播树.仿真结果表明,相比于遗传算法,所提出的基于灰狼优化...  相似文献   

17.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we propose a QoS‐based routing algorithm for dynamic multicasting. The complexity of the problem can be reduced to a simple shortest path problem by applying a Weighted Fair Queuing (WFQ) service discipline. Using a modified Bellman–Ford algorithm, the proposed routing builds a multicast tree, where a node is added to the existing multicast tree without re‐routing and satisfying QoS constraints. With user defined life‐time of connection this heuristic algorthm builds multicast tree which is near optimum over the whole duration of session. Simulation results show that tree costs are nearly as good as other dynamic multicast routings that does not consider QoS. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we discussed the issues of QoS multicast routing in cognitive radio ad hoc networks. The problem of our concern was: given a cognitive radio ad hoc network and a QoS multicast request, how to find a multicast tree so that the total bandwidth consumption of the multicast is minimized while the QoS requirements are met. We proposed two methods to solve it. One is a two‐phase method. In this method, we first employed a minimal spanning tree‐based algorithm to construct a multicast tree and then proposed a slot assignment algorithm to assign timeslots to the tree links such that the bandwidth consumption of the tree is minimized. The other is an integrated method that considers the multicast routing together with the slot assignment. Extensive simulations were conducted to show the performance of our proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a novel dynamic core-based selection (DCS) algorithm for the multicast restoration in WDM mesh networks. The core-based fault tolerance scheme provides a flexible way to control a number of core nodes with less control overheads for searching the routing path, wavelength assignment (RWA), and restoration paths when fault occurs in the one-to-many multicast domain. Compared with the source-based scheme, core-based schemes are easier to maintain, and specifically scalable in large-scale topologies. In the core-based fault tolerance scheme, k-tuple domination nodes are selected to form a minimum sized vertex subset such that each vertex in the graph is dominated by at least k vertices, where the k is defined as two in this paper. The proposed DCS algorithm is defined as each node in multicast tree session must be directly connected to at least one core node in multicast tree session and also has to be directly connected to at least one core node out of multicast tree session. The primary aim of this work is to provide the scalable and fast local survivability based on the information from core nodes. Simulation results show that the proposed algorithm outperforms the Dual Tree and MRLR algorithms in terms of total hop counts needed for all recovery paths and blocking probability for different network topologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号