首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective hydrogenation of soybean oil to reduce linolenic acid is accomplished better with copper than with nickel catalysts. However, the low activity of copper catalysts at low pressure and the high cost of batch equipment for high-pressure hydrogenation has precluded their commercial use so far. To evaluate continuous systems as an alternative, soybean oil was hydrogenated in a 120 ft × 1/8 in. tubular reactor with copper catalyst. A series of hydrogenations were performed according to a statistical design by varying processing conditions: oil flow (0.5 L/hr, 1.0 L/hr and 2.0 L/hr), reaction temperature (180 C and 200 C), hydrogen pressure (1,100 psig and 4,500 psig) and catalyst concentration (0.5% and 1.0%). An iodine value (IV) drop of 8–43 units was observed in the products whereas selectivity varied between 7 and 9. Isomerization was comparable to that observed with a batch reactor. Analysis of variance for isomerization indicated interaction between catalyst concentration and hydrogen pressure and between catalyst concentration and temperature. The influence of pressure on linolenate selectivity was different for different temperatures and pressure. Hydrogenation rate was significantly affected by pressure, temperature and catalyst concentration.  相似文献   

2.
Continuous hydrogenation of fats and fatty acids using suspended catalysts was studied in a vertical flow reactor packed with Raschig rings. A short time of reactive contact of the fat or the fatty acid with the catalyst and hydrogen is the unique feature of this system. A nickel catalyst used in the hydrogenation of soybean oil gave a reduction of 40-50 iodine value units per min, small amounts oftrans-isorners (10-20%), large proportions of linoleate in unreduced octadecadienoyl moieties (70-80%), and nonselective reduction of polyunsaturated acyl moieties (linoleate selectivity ratio 1-3). Another nickel catalyst, used in the hydrogenation of tallow fatty acids, also gave a reduction of 40-50 iodine value units per min and nonselective reduction of polyunsaturated fatty acids. A copper chromite catalyst used in the hydrogenation of soybean oil gave a reduction of 10-15 iodine value units per min, low levels oftrans- isomers (10-15%), and selective reduction of linolenoyl moieties (linolenate selectivity ratio 4-6). Composition of positional isomers of cis- andtrans-octadecenoyl moieties in partially hydrogenated products obtained both with nickel and copper chromite catalysts reveals that essentially the same mechanisms of isomerization are involved in continuous hydrogenation at short time of reactive contact as in batch hydrogenation. 1The terms “linoloyl” and “linolenoyl” are used throughout to designate9-cis, 12-cis-octadecadienoyl and 9-cis, 12-cis, 15-cis- octadecatrienoyl groups, respectively.  相似文献   

3.
Soybean oil has been hydrogenated electrochemically in a solid polymer electrolyte (SPE) reactor at 60°C and 1 atm pressure. These experiments focused on identifying cathode designs and reactor operation conditions that improved fatty acid hydrogenation selectivities. Increasing oil mass transfer into and out of the Pd-black cathode catalyst layer (by increasing the porosity of the cathode carbon paper/cloth backing material, increasing the oil feed flow rate, and inserting a turbulence promoter into the oil feed flow channel) decreased the concentrations of stearic acid and linolenic acid in oil products [for example, an iodine value (IV) 98 oil contained 12.2% C18:0 and 2.3% C18:3]. When a second metal (Ni, Cd, Zn, Pb, Cr, Fe, Ag, Cu, or Co) was electrodeposited on a Pd-black powder cathode, substantial increases in the linolenate, linoleate, and oleate selectivities were observed. For example, a Pd/Co cathode was used to synthesize an IV 113 soybean oil with 5.3% stearic acid and 2.3% linolenic acid. The trans isomer content of soybean oil products was in the range of 6–9.5% (corresponding to specific isomerization indices of 0.15–0.40, depending on the product IV) and did not increase significantly for high fatty acid hydrogenation selectivity conditions.  相似文献   

4.
Soybean oil was hydrogenated continuously in the presence of nickel catalysts. The iodine value of the products was varied by changing the oil flow rate and temperature of the reaction. Sulfur-promoted nickel catalyst increased the selectivity for linolenate hydrogenation, but formed much higher proportions oftrans isomers. Linoleate selectivity improved with temperature with both nickel and sulfur-promoted nickel catalysts, buttrans isomerization also increased. The feasibility of this continuous reactor system was demonstrated as a practical means to prepare hydrogenated stocks of desired composition and physical characteristics at high throughput.  相似文献   

5.
The hydrogenation of soybean oil methyl esters using aqueous formic acid salts solutions and heterogeneous palladium-on-carbon catalyst was investigated. Complete hydrogenation of the methyl ester was achieved by mixing a concentrated aqueous alkali formate solution with the methyl ester at 80 C in the presence of the catalyst (0.2–0.4% Pd). At the initial stages of the reaction, the selectivity was significantly higher than conventional hydrogenation (hydrogenation under pressure) performed with the same catalyste.Cis-trans isomerization was similar to the behavior of conventional techniques.  相似文献   

6.
The binary metal systems Pd–Ag and Pd–Ni have been prepared on a silica support with a total metal loading of 2.5% (w/w). About a dozen catalysts were prepared in each series covering the range 0–100 at. % Pd. The catalysts were characterised by a number of techniques, principally temperature programmed reduction, differential scanning calorimetry and metal surface area measurement. The catalyst activity and selectivity were measured for the hydrogenation of soya bean oil in both stirred and shaken batch reactors at 1 atm H2 pressure in the temperature range 100–160°C. The characterisation techniques provided strong evidence of alloying for both series of catalysts. The activity and selectivity measurements also provided supporting evidence of alloying, and the Pd–Ag system exhibited an activity maximum in the 90–100 at. % Pd range, while the Pd–Ni system maintained constant activity for alloys containing 0–60 at. % Ni. Trans-acid formation was suppressed by lower reduction temperature, and linolenate removal was improved at lower temperatures. However, it also appears that reaction rates were dominated largely by triglyceride diffusion effects.  相似文献   

7.
SiO2, a-Al2O3, g-Al2O3, ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene. The catalysts were prepared by impregnated synthesis and characterized by XRD, BET and TEM. The catalytic reaction was carried out in a fixed-bed reactor. Overall, the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene. Among the four Pd catalysts on low specific surface area supports, the catalyst on low specific surface area SiO2 (LSA-SiO2) retained a high ethylene selectivity even at complete conversion, while the other catalysts showed significant decrease in the selectivity at complete conversion. The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene. Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane, C4 alkenes and green oil, and improved the ethylene selectivity to 90% when Pd:Ag=1:1 and 1:3(w). When the ratio of Pd to Ag was above 1, the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst, and the selectivity of ethylene increased with increasing of amount of Ag. When the ratio of Pd to Ag was below 1, the activity of bimetallic catalyst decreased with increasing of amount of Ag, while the selectivity of ethylene was kept unchanged. The optimum temperature was 200~230℃ for 0.02%(w)Pd-0.02%(w)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil.  相似文献   

8.
Copper-chromium catalysts promote selective reduction of linolenyl groups in soybean oil. Since commercially available catalysts possess only moderate activity, more active catalysts were sought. Copper was dispersed on high-surface-area supports, such as silica, alumina, and molecular sieves. These catalysts had varying activities. Precipitation of copper on Cab-O-Sil, a pure form of silica with a large external surface area, gave the most active catalyst. Selectivity ratios (KLe/KLo) for the hydrogenation of soybean oil with these catalysts varied from 4 to 16; a copper-on-Cab-O-Sil catalyst exhibited the greatest selectivity. Improved selectivity and activity were observed when some supports were treated with hydrochloric acid. For example, with a copper-on-Celite catalyst, soybean oil was hydrogenated in 165 min and gave a selectivity ratio of 5.9. Hydrochloric acid treatment of Celite improved the selectivity to 9.9 and reduced hydrogenation time to 54 min. To ensure maximum activity of some of these catalysts, soybean oil should be more thoroughly bleached than is customarily done for nickel hydrogenation. A commercially refined and bleached soybean oil was hydrogenated with a copper-on-Cab-O-Sil catalyst in 18 min. The same oil, re-refined in the laboratory, was reduced in 11.5 min and had the same selectivity ratio of 15.  相似文献   

9.
There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In the interest of understanding the TFA levels, hydrogenation was carried out in this work on soybean oil and cottonseed oil at two pressures (2 and 5 bar) and 100 °C using commercially available Ni, Pd, and Pt catalysts. The TFA levels and the fatty acid profiles were analyzed by gas chromatography. The iodine value of interest is ~70 for all-purpose shortening and 95–110 for pourable oil applications. In all cases, higher hydrogen pressures produced lower levels of TFA. In the range of 70–95 iodine values for the hydrogenated products, the Pt catalyst gave the least TFA, followed closely by Ni, and then Pd, for both oils. For all three catalysts at 2- and 5-bar pressures and 70–95 iodine values, cottonseed oil contained noticeably less TFA than soybean oil; this is probably because cottonseed oil contains a lower total amount of olefin-containing fatty acids relative to soybean oil. Approximate kinetic modeling was also done on the hydrogenation data that provided additional confirmation of data consistency.  相似文献   

10.
Continuous hydrogenation of soybean oil with a stationary copper catalyst bed was performed at 110–180 C, 30–75 psig hydrogen and Iiquid hourly spaced velocities (LHSV) of 0.25–0.6 cc/hr/cc catalyst. In contrast to batch, continuous hydrogenation was achieved at a lower temperature with no need to postfilter the product. The soybean oil products from the continuous and batch processes hydrogenated to 0% triene were similar in fatty acid composition,trans content of 29% and linolenate selectivity of 5. Biometrician, North Central Region, Agricultural Research Service, U.S. Department of Agriculture, stationed at the Northern Regional Research Center, Peoria, IL 61604.  相似文献   

11.
Continuous hydrogenation of soybean oil using copper catalyst can be improved economically by reusing the catalyst. A hydrogenated oil with an approximate iodine value drop of 25 was attained by regulating the conditions and size of the reactor. Catalyst was removed by centrifuge and recycled. Reaction products were evaluated to determine catalyst activity, linolenate selectivity andtrans formation. By adding 0.2–0.4% fresh catalyst each time, the activity was retained. Linolenate selectivity ranged from 6 to 11 andtrans formation, expressed as specific isomerization, ranged from 0.63 to 0.78.  相似文献   

12.
Catalytic hydrogenation of linoleic acid on nickel,copper, and palladium   总被引:1,自引:0,他引:1  
The catalytic activity and selectivity for hydrogenation of linoleic acid were studied on Ni, Cu, and Pd catalysts. A detailed analysis of the reaction product was performed by a gas-liquid chromatograph, equipped with a capillary column, and Fourier transform-infrared spectroscopy. Geometrical and positional isomerization of linoleic acid occurred during hydrogenation, and many kinds of linoleic acid isomers (trans-9,trans-12; trans-8,cis-12 orcis-9,trans-13; cis-9,trans-12; trans-9,cis-12 andcis-9,cis-12 18∶2) were contained in the reaction products. The monoenoic acids in the partial hydrogenation products contained eight kinds of isomers and showed different isomer distributions on Ni, Cu, and Pd catalysts, respectively. The positional isomers of monoenoic acid were produced by double-bond migration during hydrogenation. On Ni and Pd catalysts, the yield ofcis-12 andtrans-12 monoenoic acids was larger than that ofcis-9 andtrans-9 monoenoic acids. On the contrary, the yield ofcis-9 andtrans-9 monoenoic acids was larger than that ofcis-12 andtrans-12 monoenoic acids on Cu catalyst. From these results, it is concluded that the double bond closer to the methyl group (Δ12) and that to the carboxyl group (Δ9) show different reactivity for hydrogenation on Ni, Cu, and Pd catalysts. Monoenoic acid formation was more selective on Cu catalyst than on Ni and Pd catalysts.  相似文献   

13.
In previous work we found that ultrasonic energy greatly enhanced the rate of hydrogenation of soybean oil. We have now investigated parameters of ultrasonic hydrogenation and the quality of the resulting products. Refined and bleached soybean oil was hydrogenated continuously with and without ultrasonic energy at different temperatures, pressures and catalyst concentrations. Flavor and oxidative stability of the oils were compared with a commercially hydrogenated soybean oil. The extent of hydrogenation (ΔIV) was not affected by temperature between 245 and 290 C, but was greater at 106 psig than at 65 psig hydrogen pressure. The ΔIV of hydrogenated oils increased linearly with catalyst concentration from 40 ppm to 150 ppm nickel. At the same catalyst concentration the IV drop was significantly increased when ultrasonic energy was used. By reducing the amount of power supplied to the ultrasonic reactor to 40% of full power, the specific power (watts/ΔIV) was lowered by 60%. Linolenate selectivities and specific isomerization (%trans/ΔIV) remained the same, but linoleate selectivities were lower than for batch hydrogenation under varied operating parameters. Flavor scores were not significantly different, initially or after storage eight days at 60 C, for oils continuously hydrogenated with and without ultrasonic energy. Hydrogenation of soybean oil with ultrasonic energy offers a method to produce good quality products at potentially lower cost than present methods.  相似文献   

14.
The hydrogenation of tetralin in the vapor phase has been investigated over Ni, Pt, and Pd catalysts to determine the evolution of the trans- and cis-decalin products as a function of conversion over the different catalysts. The concentration of each isomer in the product may be important in subsequent ring opening steps if cetane number improvement is desired. The cis-decalin isomer is preferred to open the naphthenic ring in a selective way instead of multiple cracking. However, thermodynamically, this isomer is the least favored; so, kinetic control is the only solution. By selecting the proper catalyst and operating conditions, one could keep the trans/cis-decalin ratio low. In this study, we have prepared a series of supported metal catalysts and tested them in a flow reactor at 3540 kPa and 548 K. Kinetic parameters for the hydrogenation of tetralin and the cis-to-trans-decalin isomerization over the various catalysts investigated were obtained by fitting the data with a generalized Langmuir–Hinshelwood model.

The kinetic analysis revealed that the relative rates of tetralin hydrogenation, as well as the cis-to-trans isomerization are greatly affected by adsorption site competition of decalin and tetralin, which in turn has different magnitudes over the different catalysts. At tetralin conversions above 30%, the Ni catalyst yields the lowest trans/cis-decalin ratio. In contrast, the trans/cis ratio on Pd catalyst remains constant at all conversion levels and is highest at low tetralin conversion. It is concluded that the trans/cis ratio is a combination of the intrinsic selectivity of each isomer and the isomerization reaction.  相似文献   


15.
New polymer-bound hydrogenation catalysts were made by complexing PdCl2, RhCl3·3H2O, or NiCl2 with anthranilic acid anchored to chloromethylated polystyrene. The Pd(II) and Ni(II) polymers were reduced to the corresponding Pd(O) and Ni(O) catalysts with NaBH4. In the hydrogenation of methyl sorbate, these polymer catalysts were highly selective for the formation of methyl 2-hexenoate. The diene to monoene selectivity decreased in the order: Pd(II), Pd(O), Rh(I), Ni(II), Ni(O). Kinetic studies support 1,2-reduction of the Δ4 double bond of sorbate as the main path of hydrogenation. In the hydrogenation of soybean esters, the Pd(II) polymer catalysts proved superior because they were more active than the Ni(II) polymers and produced lesstrans unsaturation than the Rh(I) polymers. Hydrogenation with Pd(II) polymers at 50~100 C and 50 to 100 psi H2 decreased the linolenate content below 3% and increasedtrans unsaturation to 10~26%. The linolenate to linoleate selectivity ranged from 1.6 to 3.2. Reaction parameters were analyzed statistically to optimize hydrogenation. Recycling through 2 or 3 hydrogenations of soybean esters was demonstrated with the Pd(II) polymers. In comparison with commercial Pd-on-alumina, the Pd(II) polymers were less active and as selective in the hydrogenation of soybean esters but more selective in the hydrogenation of methyl sorbate. Presented at ISF-AOCS Meeting, New York, April 1980.  相似文献   

16.
采用贵金属Pt、Pd为活性组分,HZSM-5沸石为载体,制备正丁烷异构化催化剂,在加压连续微反-色谱装置上对催化剂的反应性能进行考察。结果表明,负载Pt的贵金属催化剂在350℃具有较好的活性和选择性,在该温度下,HZSM-5沸石负载质量分数0.3%的Pt时,异丁烷选择性为40.0%,在相同温度下负载质量分数0.3%Pd时,异丁烷选择性为32.9%。  相似文献   

17.
Soybean oil was partially hydrogenated with copper catalyst in an isothermal, concurrent, flow type reactor to reduce linolenate content. Reaction proceeded at one atmosphere outlet pressure; the parameters of temperature, catalyst concentration and oil flow rate (residence time) were varied. The reactor was designed to permit sampling at points along its length. Intermediate and final samples were analyzed to give total characterization of the partially hydrogenated oil. Data thus obtained were used to model and simulate the continuous hydrogenation kinetics. Linolenate selectivity is high and variations in reaction parameters appeared to have little effect. Specific isomerization values were increased as catalyst concentration increased but were unaffected by temperature and oil flow rate. Conjugated diene formation went through a maximum as the hydrogenation proceeded. Results of the copper-catalyzed continuous hydrogenations were compared to those of batch hydrogenations using the same reaction parameters.  相似文献   

18.
The rate of hydrogenation of soybean oil with either copper chromite or nickel catalysts increased more than a hundredfold with the aid of ultrasonication. In a continuous reaction system, the selectivity with copper catalyst for linolenate reduction was somewhat lower when ultrasonic energy was applied than when not applied. With ultrasonic energy, 87% hydrogenation of linolenate in soybean oil was obtained in 9 sec at 115 psig H2 with 1% copper chromite at 181 C and 77% linolenate hydrogenation with 0.025% nickel. Without ultrasonic energy, only 59% linolenate hydrogenation was obtained in 240 sec with copper chromite at 198 C and 500 psig H2 and 68% linolenate hydrogenation in 480 sec with nickel at 200 C and 115 psig H2. This innovation may offer an important advantage in increasing the activity of commercial catalysts, particularly copper chromite, for fats and oil hydrogenation.  相似文献   

19.
This work is aimed at evaluating the performance of several catalysts in the partial hydrogenation of sunflower oil. The catalysts are composed of noble (Pd and Pt) and base metals (Ni, Co and Cu), supported on both silica and alumina. The following order can be proposed for the effect of the metal on the hydrogenation activity: Pd > Pt > Ni > Co > Cu. At a target iodine value of 70 (a typical value for oleomargarine), the production of trans isomers is minimum for supported nickel catalysts (25.7–32.4 %, depending on the operating conditions). Regarding the effect of the support, Al2O3 allows for more active catalysts based on noble metals (Pd and Pt) and Co, the effect being much more pronounced for Pt. Binary mixtures of catalysts have been studied, in order to strike a balance between catalyst activity and product distribution. The results evidence that Pd/Al2O3–Co/SiO2 mixture has a good balance between activity and selectivity, and leads to a very low production of trans isomers (11.8 %) and a moderate amount of saturated stearic acid (13.5 %). Consequently, the utilization of cobalt‐based catalysts (or the addition of cobalt to other metallic catalysts) could be considered a promising alternative for the hydrogenation of edible oil.  相似文献   

20.
综述了二硝基甲苯液相加氢合成甲苯二胺催化剂的研究进展,并介绍了(Pd+Pt)/C等贵金属催化剂、雷尼镍催化剂、负载型镍基催化剂、非晶态镍催化剂和漆原镍催化剂的最新研究成果。通过对比上述各催化剂在生产成本、制备工艺及催化二硝基甲苯加氢性能等方面的优缺点,发现非晶态镍催化剂不但价格低廉,而且在1 MPa低压二硝基甲苯液相加氢的反应中表现出与(Pd+Pt)/C工业催化剂相似的活性和选择性,是替代二硝基甲苯液相加氢贵金属和雷尼镍工业催化剂的首要选择;漆原镍催化剂制备工艺简单,价格低廉,且在众多的加氢反应中表现出与骨架镍催化剂相似的催化性能,也具有较大的工业化潜质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号