首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出一种适用于气化炉机械振打器往复密封功率损耗计算的方法,利用有限元法对气化炉机械振打器往复密封结构的功率损耗进行分析,同时搭建密封功率损耗测试平台,对其进行实验研究。结果表明:相同条件下,V形沟槽密封结构所造成的功率损耗要大于矩形沟槽密封结构,O形圈密封结构较组合圈密封结构的功率损耗要大,因此机械振打器的往复密封结构选择组合圈与矩形沟槽配合,可减少功率损耗。  相似文献   

2.
O形圈密封新结构   总被引:1,自引:0,他引:1  
  相似文献   

3.
一种可以实现水下连接角度补偿的球形法兰连接器采用O形圈作为主要的密封元件,位于球面上的密封槽通过影响O形圈的伸长率和压缩率来实现密封效果。槽宽b与槽深h是密封沟槽的主要尺寸,在满足球面沟槽设计准则的前提下,对O形圈球面密封沟槽的尺寸进行了设计计算。基于标准沟槽与球面沟槽体积大小一致的原则,确定了球面密封槽的具体尺寸。密封圈沟槽的尺寸设计主要改变了O形圈的压缩率大小。通过研究压缩率对O形圈密封效果的影响可以确定,17.6%左右的压缩率能够使密封圈的密封效果达到最佳。  相似文献   

4.
结合加工工艺和密封原理对O形圈在球面密封结构的沟槽设计进行了分析,提出了球面密封沟槽的设计方法,并在采油现场进行了球头灵活性和密封性能试验。结果表明,球头摆动灵活,密封性能可靠,验证了球面密封沟槽设计方法的正确性。  相似文献   

5.
针对双浮动密封橡胶O形圈接触过程应力的变化,建立双浮动密封二维轴对称非线性接触模型;利用有限元方法对O形圈进行应力计算,分析O形圈在不同压缩率、不同浮封座和浮动环的斜面角度及不同摩擦因数下的应力变化情况。结果表明:橡胶O形圈各应力最大值随压缩率的增加呈线性增大, O形圈内高应力分布区域随压缩率的增加而增大,并由接触部位附近向其中间位置扩散;摩擦因数对O形圈各应力影响很小,而浮封座和浮动环的斜面角度对O形圈等效应力和接触压力影响较大;随着浮封座斜面角的增加,等效应力总体趋于减小,接触压力先减小后缓慢增加,而剪切应力整体变化较小;随着浮动环斜面角的增加,等效应力、接触压力呈递增趋势,剪切应力曲线上下波动,但整体变化不明显。确定双浮动密封浮封座和浮动环斜面角度最优值,为双浮动密封结构设计提供了指导。  相似文献   

6.
针对深海高压特殊环境,将现有O形圈密封结构进行改进和优化使其在海下具有更好的密封性能。利用ANSYS软件建立O形橡胶圈二维轴对称模型,分析深海环境下密封槽直径、O形圈材料、密封槽深度、法兰间隙等对O形圈密封性能影响。结果表明:深海环境下,应适当加大密封槽直径以避免压缩后O形圈与槽壁间形成空腔;深海环境下使用的O形圈,采用丁腈橡胶,选择压缩率在20%~25%之间,密封间隙为0较为合适。  相似文献   

7.
文中采用实例介绍了O形圈应用在内部受气压轴向密封时所采用的密封形式及关键控制点.  相似文献   

8.
利用ABAQUS软件建立了高压氢气环境下橡胶O形圈静密封结构的有限元分析模型,研究了高压氢气作用下由于橡胶材料的吸氢膨胀对O形圈变形及应力的影响,探讨了不同初始压缩率、氢气压力、沟槽间隙、有无挡圈等工况下O形圈最大Von Mises应力、最大剪切应力和最大接触应力的变化规律。结果表明:高压氢气环境下,吸氢膨胀会导致橡胶O形圈的截面高度和面积的增加,但对O形圈的应力基本无影响。增加O形圈压缩率会提高初始安装工况下的接触应力,有利于初始密封的形成,但当介质压力较大时,过高的压缩率会显著增加剪切应力,导致O形圈发生剪切破坏。相较于低压工况,高压下密封沟槽间隙对O形圈的Mises应力和剪切的影响非常显著,较大的沟槽间隙会使O形圈发生挤出和剪切破坏,而安装密封挡圈可明显改善O形圈的变形和应力情况,有效防止O形圈被挤入沟槽间隙,同时提高密封性能。  相似文献   

9.
浮动端面密封系统中O形圈的研究   总被引:1,自引:0,他引:1  
论述了O形圈的密封原理、设计原则、压力与摩擦力矩,压力与泄漏量之间的关系,并将它们成功地应用于浮动端面密封系统的设计中。  相似文献   

10.
丁腈橡胶O形圈的静密封及微动密封特性   总被引:3,自引:0,他引:3  
利用有限元软件Abaqus建立丁腈橡胶O形圈的轴对称有限元分析模型,分析丁腈橡胶O形圈作为静密封和微动密封时的性能参数.研究表明,O形圈作为静密封时,当流体压力达到6 MPa以上时,必须使用挡圈来避免装配间隙倒角处的剪切失效并提高O形圈的工作压力;在微动密封内外行程中,O形圈的Von Mises应力分布存在较大差异,极值位置变化趋势相反,并且内外行程分别存在一随流体压力增加而增加的固定临界黏滑位移,微动位移小于该值时,O形圈处于黏滑状态,微动位移大于该值时,O形圈发生完全滑动;压缩率增加时,O形圈往复运动过程中受到的滑动摩擦力会急剧增加,在保证密封性的基础上,压缩率取值不宜过大.  相似文献   

11.
O形橡胶密封圈应力与接触压力的有限元分析   总被引:21,自引:8,他引:21  
利用大型有限元软件ANSYS对O形橡胶密封圈在不同压缩率和油压下的变形与受力情况进行了分析研究,得出了相应情况下范.米塞斯(Von M ises)应力分布及接触压力与最大接触压力的变化关系。结果表明:随着油压的增加,范.米塞斯(Von M ises)应力相应增加,且应力峰区也相应改变,说明O形圈可能出现裂纹的位置是随着油压而变化的;O形橡胶密封圈与轴之间的最大接触压力随着压缩率、油压的增加而增加,在不同油压作用下,最大接触压力始终大于油压,满足O形圈的密封条件。  相似文献   

12.
O形橡胶密封圈密封性能的有限元分析   总被引:27,自引:11,他引:16  
利用ANSYS建立了液压系统中液压缸用O形橡胶密封圈的二维轴对称模型,分析计算了O形密封圈缸筒和轴套的间隙、密封轴套槽口倒角半径、O形密封圈的截面尺寸、橡胶材料参数、初始压缩率对密封面最大接触压力和剪切应力的影响。结果表明:O形密封圈缸筒和轴套的间隙对剪切应力的影响很大;轴套沟槽宽度、O形密封圈的截面尺寸和橡胶材料参数对密封面最大接触压力的影响很大;初始压缩率对密封面最大接触压力和剪切应力的影响都很大;对于本文分析的结构,在其它条件不变的情况下密封轴套槽口倒角半径对密封面最大接触压力和剪切应力的影响都不大;分析结果验证了长期使用的经验设计。  相似文献   

13.
液压式配气系统O型密封圈动密封特性分析   总被引:3,自引:0,他引:3  
利用ABAQUS软件建立活塞运动速度为4 m/s、介质压力为6 MPa、摩擦因数为0.3的液压式配气系统O型密封圈有限元分析模型,分析不同往复运动速度、预压缩率、介质压力对液压式配气系统O型密封圈动密封特性的影响。结果表明:O型密封圈密封面的接触压力随位移的变化而产生波动,接触压力随介质压力、预压缩率的增大呈线性增大,运动速度对接触压力影响不大,接触压力曲线波动幅度随运动速度、介质压力、预压缩率的增大而增大;O型密封圈与油缸之间接触面的动密封性能优于O型密封圈与活塞之间接触面;O型密封圈在推程时的动密封性能优于回程;预压缩率小于10%时,O型密封圈不能满足该液压式配气系统的动密封要求,要确保O型密封圈的密封性,需要选择合理的预压缩率。  相似文献   

14.
水下柔性连接器可解决水下油气管道在连接时因管道角度偏离而无法成功对接的问题。水下连接器的密封结构以球面上的O形圈为主,为了验证连接器密封结构在水下的密封性能,通过对O形圈材料本构方程的计算分析,得到O形圈橡胶材料的重要材料参数;从von Mises应力、接触压力、不同接触面的接触宽度等方面,分析不同介质压力对O形圈密封性能的影响。结果表明:水下柔性连接器密封结构在不同工作状态下均能够保持良好的密封性能,且介质压力越大,O形圈与球形结构上的密封槽之间的接触应力就越大,连接器密封性能有所提升。通过压力试验验证了O形圈球形结构应用在水下是可靠的。  相似文献   

15.
橡胶O形圈密封性能的有限元分析   总被引:6,自引:0,他引:6  
采用ABAQUS有限元分析软件建立O形密封圈的二维轴对称模型,研究预压缩率与介质压力对O形圈VonMises应力、接触应力、接触长度的影响,确定O形圈容易失效的位置,并使用Karaszkiewicz接触公式对有限元分析的结果进行验证。结果表明:O形圈和密封槽转角接触部位容易失效;接触应力呈抛物线分布,接触应力、接触长度随着预压缩率、介质压力增大而增大,有限元计算值与Karaszkiewicz公式计算值较为一致,验证了有限元分析结果的可靠性。  相似文献   

16.
流体密封橡胶圈密封性能分析   总被引:7,自引:5,他引:2  
对通用的O形橡胶密封圈结构进行简化,采用罚函数接触单元法,对其中的关键密封元件O形橡胶密封圈采用超弹性单元建立了包含接触的非线性模型,并运用通用大型有限元分析软件ANSYS对其进行了求解。对于不同变形情况下的压缩量,以及压缩后施加侧压后的应力进行了分析。同时还对照计算了O形圈接触界面摩擦因数不同情况下的变形及扭转。结果表明,所采用的方法能够预测O形圈压缩中的变形和应力等特征参数,增加对O形密封圈密封性能的了解,并对同类密封结构设计有一定的指导意义。  相似文献   

17.
以某潜水器大型舱段连接处使用的三角密封结构为研究对象,建立O形圈与三角形沟槽接触的非线性有限元分析模型,仿真分析三角密封结构的橡胶材料硬度、O形圈内径、沟槽倒角尺寸、沟槽圆角尺寸对密封性能的影响规律。结果表明:橡胶材料硬度、沟槽倒角尺寸对密封性能影响较大,O形圈内径与沟槽圆角尺寸对密封性能影响较小;随着橡胶材料硬度的增加,O形圈密封能力增强,但在相同液体压力条件下,橡胶材料硬度越大O形圈应力越高,增大了O形圈被破坏的可能性,因此,在保证密封性能的前提下,要尽可能选取硬度小的O形圈;随着沟槽倒角尺寸的增加,O形圈的密封性能不断下降,同时应力水平也逐渐降低,因此,设计沟槽倒角尺寸时,在保证密封性能的前提下,要尽可能选取大的倒角尺寸。  相似文献   

18.
水下机器人耐压壳体O形圈密封性能有限元分析   总被引:1,自引:0,他引:1  
由于水下机器人工作环境的特殊性,对其耐压壳体的密封性能有严格要求,而其O形密封圈在其中起到至关重要的作用。文中基于橡胶密封结构的非线性有限元理论,应用有限元分析软件ABAQUS建立O形密封圈的二维轴对称模型,对某水下机器人耐压壳体中O形密封圈在设计条件下的受力情况及特性进行了分析,得到了在设计水深条件下的O形密封圈变形情况、应力分布及最大接触压力。结果表明:密封面上最大接触压力大于外部海水压力。通过试验验证了某耐压壳体密封设计的可靠性。  相似文献   

19.
O形橡胶密封圈静密封应力分析及密封性能研究   总被引:2,自引:0,他引:2  
结合某液压缸采用O形橡胶密封圈实现低压静密封的实例,建立了大直径O形橡胶密封圈与密封副接触的非线性有限元分析模型,得出了其在安装和使用中的等效VonMises应力和接触正应力分布,据此,对O形橡胶密封圈的力学与密封性能进行了分析,并给出了合理选择O形橡胶密封圈拉伸量与压缩率的理论分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号