首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
高温熔盐干法后处理以熔盐作为电解质,通过电解精炼和电沉积回收核燃料中的铀和钚。目前,俄罗斯、美国、日本、韩国和欧盟等国均在积极发展乏燃料高温熔盐干法后处理技术的研究,其中俄罗斯的金属氧化物核燃料电沉积流程是经典的流程之一。本文对俄罗斯原子反应堆研究所(Research Institute of Atomic Reactors, RIAR)发展的氧化物乏燃料高温熔盐电沉积干法后处理的发展现状、流程及特点进行了综述。  相似文献   

2.
高温熔盐干法后处理以熔盐作为电解质,通过电解精炼和电沉积回收核燃料中的铀和钚。目前,俄罗斯、美国、日本、韩国和欧盟等国均在积极发展乏燃料高温熔盐干法后处理技术的研究,其中俄罗斯的金属氧化物核燃料电沉积流程是经典的流程之一。本文对俄罗斯原子反应堆研究所(Research Institute of Atomic Reactors,RIAR)发展的氧化物乏燃料高温熔盐电沉积干法后处理的发展现状、流程及特点进行了综述。  相似文献   

3.
熔盐电解精炼是乏燃料干法后处理的核心工艺单元,通过数学模型探索高温熔盐电解精炼过程的化学与电化学变化,可为电解精炼工艺优化和设备设计提供参考依据。本文基于电化学热力学及物质传递公式建立了乏燃料熔盐电解精炼过程的数学模型,以铀钚锆三元合金燃料为研究对象,计算了燃料中关键元素的电极电势、分电流及物料分布随时间的变化。采用向后差分法对物料分布变化方程进行离散,通过文献实验数据对建立的数学模型进行了准确性验证。结果表明,模拟计算所得阴极沉积铀产品与实验数据的相对误差为2.80%,所建数学模型具有较好的拟合性。同时采用所建模型模拟计算了电流强度对乏燃料电解精炼过程的影响,结果表明电解速率与电流强度呈正比,不改变钚铀锆的溶解和沉积顺序。  相似文献   

4.
在核燃料的干法后处理中,高温熔融盐具有腐蚀性强、能耗大等缺点,而离子液体作为一种低温熔融有机盐,具有熔点低、离子电导率高、电化学窗口宽等优点,被用于回收核燃料中的锕系元素。介绍了离子液体组成、分类及特点,综述了锕系元素(钍、铀、镎、钚、镅)在第一代和第二代离子液体中的电化学行为,总结了离子液体中电沉积锕系元素存在的问题,并展望了该领域重点研究方向。  相似文献   

5.
为了从铀基体中分离痕量钚,采用由TBP 色层柱和7402季铵盐色层柱组成的萃取色层法及低本底α谱仪对模拟铀样品中铀钚分离方法进行了研究,并确定了分离流程的条件;对影响流程分离效果的主要因素,如料液和洗涤液酸度、流速、解吸液浓度等进行了研究,确定了最佳分离流程.当料液中铀和钚分别为0.1 g和6 ng时, 对铀的去污因子大于107,钚的收率大于95%,满足了质谱法测量铀基体中杂质钚同位素丰度比值的要求.使用该流程对后处理铀产品进行了铀钚分离及质谱测量.  相似文献   

6.
镎和钚是长寿命极毒元素,核燃料后处理铀产品中对镎和钚的控制要求极其严格。准确、及时、稳定地测定乏燃料后处理厂铀线尾端样品以及铀产品(以下简称样品)中镎钚的含量是乏燃料后处理质量控制的要求。国内一直未建立起满足后处理铀线质量控制的分析方法,现有方法存在的主要问题是去除铀基体的分离流程长,去污因子不稳定,很难满足铀产品的质量控制要求(样品中镎和钚的含量极低而铀镎和铀钚的含量比值又非常高,只有经过有效分离后方能准确测定),而国外对此类方法均不予报道。  相似文献   

7.
氧化物的溶解过程是氧化物乏燃料熔盐电解干法后处理工艺的关键步骤,溶解产物将为后续铀钚的分离回收提供原料。氧化物在熔盐体系中溶解度和溶解速率一般较小,为满足工艺需要,通常需要引入氯化试剂。使用不同的氯化试剂,其溶解机理有较大差异。通过广泛的文献调研,分析比较了各种氯化试剂在氯化过程中相关原理及特点,为我国开展铀、钚氧化物氯化溶解的研究提供指导。  相似文献   

8.
在乏燃料后处理Purex流程中,利用TBP对各种价态钚离子不同的萃取性能进行铀和钚的分离和纯化。钚的价态影响着铀、钚的分离程度,后处理工艺溶液中钚的价态需严格控制、随时监测。由于各种价态的钚离子均具有特征吸收峰,因此,采用分光光度法可不经分离直接进行测量。  相似文献   

9.
基于LiCl-KCl熔盐中铀离子的电化学行为研究结果,我们在LiCl-KCl-UCl3和LiCl-KCl-UCl3-UCl4两种熔盐中开展了铀的电沉积研究,旨在摸索沉积方法,并对沉积物的形貌及组成进行分析表征。  相似文献   

10.
高温氟化物挥发法是一种用于分离和获取高纯度铀的核燃料干法分离工艺。该工艺技术成熟,分离得到的铀品质好,但因高温氟化的反应条件对设备材质要求苛刻,该方法在乏燃料后处理领域未能得到很好的发展。本文通过比较不同氟化剂与铀化合物发生氟化反应时的反应热及反应平衡常数,着重探讨了采用对设备材料腐蚀相对较弱的NF3替代F2的理论可行性。结果表明,NF3替代F2作为氟化剂在反应热力学上是可行的;氟化反应时放出的反应热也不会对熔融盐反应体系的温度带来剧烈影响。  相似文献   

11.
Electrotransport behaviour of U and Pu in a molten salt electrorefining cell has been numerically simulated with an improved thermochemical model. Depending upon saturated or unsaturated states of the liquid Cd electrodes with respect to U or Pu or with both U and Pu, 16 conditions of electrorefiner cell operation have been categorised and electrotransport simulated for all the realistic conditions. Algebraic equations for determining the compositions of the salt phase and the two electrodes under each condition of electrotransport are derived. Fractional mass transport coefficients and relative fractional mass transport coefficients are derived for each condition to illustrate the electrotransport behaviour. Comparison is made between modeling with concentration dependent and concentration independent activity coefficients for U and Pu in liquid Cd. The electrotransport to a solid cathode and anodic dissolution have also been simulated. Application of the model to reprocessing of spent metallic fuel is discussed with respect to U recovery, Pu enrichment and reconstitution of the spent fuel with desired fuel composition.  相似文献   

12.
自制一套57Co源激发K系X射线荧光(K-XRF)分析系统。用57Co的122keVγ射线激发工艺溶液中U、Pu的K系X射线荧光,用HPGe探测器-多道微机分析系统进行测量,并以122keVγ射线康普顿散射线为内标,建立强度比-浓度校正曲线,快速无损地测定PWR乏燃料后处理工艺溶液中U、Pu浓度。测定范围为0.5—200g/L,精密度为5.0%—1.5%。方法适于PWR乏燃料后处理工艺中U、Pu浓度的快速控制分析或在线分析。在同时应用57Co透射源的情况下,精密度达0.5%,方法适于核燃料衡算分析。  相似文献   

13.
镧系及锕系元素在离子液体中的电化学行为   总被引:1,自引:0,他引:1  
乏燃料回收是核燃料循环的核心,对核安全和核能可持续发展具有重要的意义,其分为使用水溶液的湿法和不使用水溶液的干法处理。熔盐电解技术是乏燃料干法回收的重要方法之一,但其工艺温度往往在数百摄氏度,对设备和能耗要求都很高。离子液体具有电化学窗口宽、低熔点、低蒸汽压、热稳定性好等优点,有望替代高温熔盐用于乏燃料干法回收。本文概述了镧系元素和锕系元素在离子液体中电化学方面的研究状况,表明离子液体用于乏燃料干法回收是可行的,但需要更多的基础性研究。  相似文献   

14.
Pyro-metallurgical technology is one of potential devices for future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required for the fuel cycle. In order to satisfy the requirement, actinides recycling applicable to LWR and FBR cycles by pyro-process has been developed since more than ten years in CRIEPI. The main technology is electrorefining for U and Pu separation and reductive-extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology on separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance on the geologic disposal.

The main achievements are summarized as follows:

• -|The elemental technologies, such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification, have been developed successfully with lots of experiments

• -|The fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining have been demonstrated by engineering scale facility in Argonne National Laboratory by using spent fuels and in CRIEPI by uranium tests.

• -|Single element tests, using actinides, showed the Li reduction to be technically feasible, remaining the subjects of technical feasibility on multi-elements system and on effective recycle of Li by electrolysis of Li2O.

• -|Concerning on the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has been also established through uranium tests.

• -|It is confirmed that more than 99% of TRU nuclides can be recovered from the high level liquid waste by TRU tests

• -|Through these studies, the process flow sheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established.

The subjects to be emphasized for further development are classified into three categories, that is, process development (demonstration), technology for engineering development, and supplemental technology.

The metal fuel FBR has a high potential for recycling actinides by integration with pyro-reprocessing. Alloys of U-Pu-Zr with minor actinides are investigated from points of fuel properties. The miscibility and other characteristics suggest that the maximum content up to ca. 5 wt% of minor actinides is allowable in the matrix. Nine pins of metal fuel including minor actinides are ready for irradiation at Phenix fast reactor.  相似文献   


15.
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239Pu and 241Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.  相似文献   

16.
ABSTRACT

An advanced reprocessing system has been developed to treat various SF (spent fuels): spent UO2 and MOX (mixed oxide) fuels from LWR (light water reactor) and MOX fuel from FR (fast reactor). The system consists of SF fluorination to separate most U (uranium) as volatile UF6, dissolution of solid residue containing Pu (plutonium), FP (fission products), MA (minor actinides) and partial U by nitric acid, and Pu+U separation from FP and MA by conventional solvent extraction. Gaseous UF6 is purified by the thermal decomposition and the adsorption of volatile PuF6 and adsorption of other impurities. This system is a hybrid process of fluoride volatility and solvent extraction and called FLUOREX. Fluorination of most U in the early stage of the reprocessing process is aimed at sharply reducing the amount of SF to be treated in the downstream aqueous steps and directly providing purified UF6 for the enrichment process without conversion. The FLUOREX can flexibly adjust the Pu/U ratio, rapidly separate UF6 and economically treat aqueous Pu+U. These features are especially suitable for the transition period fuel cycle from LWR to FR. This paper summarizes the feasibility confirmation results of FLUOREX.  相似文献   

17.
干法后处理流程可应用于快堆乏燃料后处理。由美国开发的熔盐电解精炼流程是目前最具应用前景的干法后处理流程之一。为了将电解精炼流程应用于氧化物乏燃料后处理,需要将氧化物乏燃料转化为金属。目前电化学还原是应用最广的氧化物乏燃料还原方法,但是该过程仍然存在亟待解决的关键科学与技术问题。本文针对氧化物乏燃料电化学还原研究进展进行综合阐述,主要包括过程简介、研究现状及电化学还原机理等几个方面。  相似文献   

18.
Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous ‘on-line’ reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R&D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号