首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the problem of the exponential stability of networked control systems (NCSs) with large delay periods, which often appear in the transmission of NCSs. Some new concepts about large delay periods are introduced, and a method based on switching is employed. The maximum allowable transfer interval is obtained such that the considered system is exponentially stable. The criteria obtained contain existing results without considering a large delay period as a special case. An example is given to show the effectiveness of the proposed criteria. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the stability problems of a class of switched systems with limiting average dwell time (ADT) are concerned. The common ADT is improved to a form of limit, and the limiting ADT even can be infinite. Different from previous results, in order to take full advantage of stabilizing switchings, switching‐dependent switched parameters are first used to describe the relationship of two consecutive activated switchings. Then, stability criteria of switched systems with limiting ADT are established, which are less conservative comparing with the existing results. Additionally, some stability criteria of switched systems including continuous‐time and discrete‐time cases are derived. Finally, the validity and effectiveness of our results are elucidated by numerical examples.  相似文献   

3.
The output regulation problem of switched linear multi-agent systems with stabilisable and unstabilisable subsystems is investigated in this paper. A sufficient condition for the solvability of the problem is given. Owing to the characteristics of switched multi-agent systems, even if each agent has its own dwell time, the multi-agent systems, if viewed as an overall switched system, may not have a dwell time. To overcome this difficulty, we present a new approach, called an agent-dependent average dwell time method. Due to the limited information exchange between agents, a distributed dynamic observer network for agents is provided. Further, a distributed dynamic controller based on observer is designed. Finally, simulation results show the effectiveness of the proposed solutions.  相似文献   

4.
Sufficient conditions are derived for the robust stability of discrete-time, switched, linear systems with dwell time in the presence of polytopic type parameter uncertainty. A Lyapunov function, in quadratic form, is assigned to each of the subsystems. This function is allowed to be time-varying and piecewise linear during the dwell time and it becomes time invariant afterwards. Asymptotic stability conditions are obtained in terms of linear matrix inequalities for the nominal set of subsystems. These conditions are then extended to the case where the subsystems encounter polytopic type parameter uncertainties. The developed method is applied to l 2-gain analysis where a bounded real lemma is derived, and to H control and estimation, both for the nominal and the uncertain cases.  相似文献   

5.
This paper concerns the asynchronously switched control problem for a class of switched linear systems with average dwell time (ADT) in both continuous-time and discrete-time contexts. The so-called asynchronous switching means that the switchings between the candidate controllers and system modes are asynchronous. By further allowing the Lyapunov-like function to increase during the running time of active subsystems, the extended stability results for switched systems with ADT in nonlinear setting are first derived. Then, the asynchronously switched stabilizing control problem for linear cases is solved. Given the increase scale and the decrease scale of the Lyapunov-like function and the maximal delay of asynchronous switching, the minimal ADT for admissible switching signals and the corresponding controller gains are obtained. A numerical example is given to show the validity and potential of the developed results.  相似文献   

6.
7.
This paper investigates an event-triggered average dwell time (ADT) control method for switched systems with dynamic uncertainty and actuator saturation. An event-trigger is employed and only few necessary data are authorised to be transmitted to the controller by the event-trigger when its threshold is violated. Since the time-intervals of system switching signal and data releasing time-intervals of the event-trigger share common time-sequence yet not inter-influenced, an ADT control law is proposed for guaranteeing system exponential stability; meanwhile, the actuator saturation limitation is also considered. More significantly, a minimal data releasing time-interval of the event-trigger is given and it has been proved that the event-trigger cannot be violated during that time-interval. Numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

8.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

9.
This article investigates the stability of a class of switched systems using dynamical dwell time approach. First, the condition for stability of switched systems whose subsystems are stable are presented with dynamical dwell time approach, which is shown to be less conservative in switching law design than dwell time approach. Then the proposed approach is extended to the switched systems with both stable and unstable subsystems. Finally, some numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

10.
Inspired by the idea of multiple Lyapunov functions and the average dwell time, we address the stability analysis of nonautonomous continuous‐time switched systems. First, we investigate nonautonomous continuous‐time switched nonlinear systems and successively propose sufficient conditions for their (uniform) stability, global (uniform) asymptotic stability, and global (uniform) exponential stability, in which an indefinite scalar function is utilized to release the nonincreasing requirements of the classical multiple Lyapunov functions. Afterwards, by using multiple Lyapunov functions of quadratic form, we obtain the corresponding sufficient conditions for (uniform) stability, global (uniform) asymptotic stability, and global exponential stability of nonautonomous switched linear systems. Finally, we consider the computation issue of our current results for a special class of nonautonomous switched systems (ie, rational nonautonomous switched systems), associated with two illustrative examples.  相似文献   

11.
In this article, a sufficient condition on the minimum dwell time that guarantees the stability of switched linear systems is given. The proposed method interprets the stability of switched linear systems through the distance between the eigenvector sets of subsystem matrices. Thus, an explicit relation in view of stability is obtained between the family of the involved subsytems and the set of admissible switching signals.  相似文献   

12.
This paper focuses on the problem of simultaneous control and fault detection (FD) for discrete-time switched systems. The main goal is to develop a control/detection unit (CDU) associated with a switching law to control the system and detect faults simultaneously. When the switched systems are with partial measurable states, we directly use these states to construct partial control and FD signals. Next, the reduced-order CDU is designed to generate the other control and FD signals. Compared with existing results based on full-order CDU, the proposed results lead to less conservatism and reduce design complexity. The switching law is constructed in the frame of persistent dwell time (PDT) switching. A novel switching number constraint condition is introduced, which further relaxes the restrictions on the dwell time of switching processes of PDT. The less restriction on dwell time degrades the performance requirement of each subsystem and upgrades the degree of freedom for switching law design. Based on the proposed results, a class of nonweighted performance indexes is introduced to characterize the fault sensitivity and robustness. Finally, the effectiveness of the proposed method is illustrated by an example.  相似文献   

13.
The issue of exponential stability analysis of continuous‐time switched singular systems consisting of a family of stable and unstable subsystems with time‐varying delay is investigated in this paper. It is very difficult to analyze the stability of such systems because of the existence of time‐delay and unstable subsystems. In this regard, on the basis of the free‐weighting matrix approach, by constructing the new Lyapunov‐like Krasovskii functional, and using the average dwell‐time approach, delay‐dependent sufficient conditions are derived and formulated in terms of LMIs to check the exponential stability of such systems. This paper also highlights the relationship between the average dwell‐time of the switched singular time‐delay system, its stability, exponential convergence rate of differential states, and algebraic states. Finally, a numerical example is given to confirm the analytical results and illustrate the effectiveness of the proposed strategy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper considers a class of stochastic systems referred to as stochastic switched systems of neutral type with time‐varying delay, which combines switched systems with neutral stochastic systems. The systems consist of subsystems of two forms: (i) only stable subsystems and (ii) both stable subsystems and unstable subsystems. By establishing an integral inequality, the exponential stability in pth(p≥1)‐moment for such systems with only stable subsystems is first considered. Then, by using an average dwell time approach, the exponential stability in pth(p≥1)‐moment for the second form is addressed. An important finding of this study is that when the average dwell time is chosen to be sufficiently large and the total activation time of unstable subsystems is relatively small compared with that of stable subsystems, the exponential stability in pth(p≥1)‐moment for such systems can be guaranteed. Two major advantages of these new results are that the differentiability or continuity of the delay function is not required compared with the existing results in the literature, and the proposed approaches can be used to consider the case when the neutral item and the stochastic perturbation are simultaneously presented. An example is provided to verify the effectiveness and potential of the theoretic results obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.  相似文献   

16.
This article is concerned with the problem of state feedback control for a class of discrete-time switched singular systems with time-varying state delays under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the system modes. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence a stabilising switching law is first derived to guarantee the regularity, causality and exponential stability of the closed-loop system in the presence of asynchronous switching. The stabilising switching law is characterised by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

17.
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.  相似文献   

18.
In this paper, several equivalent stability conditions for switched linear systems with dwell time are presented. Both continuous‐time and discrete‐time cases are considered. For the continuous‐time case, the conditions that are convex in system matrices are presented in terms of infinite‐dimensional linear matrix inequalities (LMIs), which are not numerically testable. Then, by adopting the sum of square (SOS) and piecewise linear approach, computable conditions are formulated in terms of SOS program and LMIs. Compared to the literature, less conservative results can be obtained through solving these conditions for the same polynomial degree or discretized order. For the discrete‐time case, the stability conditions, which are convex in system matrices, are numerically testable. The convexity comes at the price of increment of computational complexity. Furthermore, by adopting the convexification approach, sufficient stability conditions of switched linear systems with polytopic uncertainties are derived, both for continuous‐time and discrete‐time cases. At last, several examples are given to demonstrate the correctness and advantages of our results.  相似文献   

19.
This paper studies the problem of output regulation for a class of switched nonlinear systems. Sufficient conditions for the problem to be solved are presented in terms of the average dwell‐time scheme. These conditions are obtained based on full information feedback laws and error feedback laws, respectively. The results extend the output regulation theory for non‐switched nonlinear systems to switched nonlinear systems. A simulation example also shows the validity of the results.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the fault estimation for a class of discrete‐time switched nonlinear systems with mixed time delays. The fault existing in the system is assumed to be characterized by an external system, which incorporates the fault's prior knowledge to the considered systems. The fault estimator is designed by using the multiple Lyapunov–Krasovskii functional and average dwell‐time approach. Sufficient conditions in the form of linear matrix inequalities (LMIs) are developed to ensure the resulting error system is exponentially stable with an optimized disturbance attenuation level. The gain matrices of the estimator can be easily determined by using the standard optimization toolboxes. Finally, numerical examples and simulation results with the help of real‐time systems are given to illustrate the effectiveness and advantages of the obtained results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号