首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The output regulation problem of switched linear multi-agent systems with stabilisable and unstabilisable subsystems is investigated in this paper. A sufficient condition for the solvability of the problem is given. Owing to the characteristics of switched multi-agent systems, even if each agent has its own dwell time, the multi-agent systems, if viewed as an overall switched system, may not have a dwell time. To overcome this difficulty, we present a new approach, called an agent-dependent average dwell time method. Due to the limited information exchange between agents, a distributed dynamic observer network for agents is provided. Further, a distributed dynamic controller based on observer is designed. Finally, simulation results show the effectiveness of the proposed solutions.  相似文献   

2.
Sufficient conditions are derived for the robust stability of discrete-time, switched, linear systems with dwell time in the presence of polytopic type parameter uncertainty. A Lyapunov function, in quadratic form, is assigned to each of the subsystems. This function is allowed to be time-varying and piecewise linear during the dwell time and it becomes time invariant afterwards. Asymptotic stability conditions are obtained in terms of linear matrix inequalities for the nominal set of subsystems. These conditions are then extended to the case where the subsystems encounter polytopic type parameter uncertainties. The developed method is applied to l 2-gain analysis where a bounded real lemma is derived, and to H control and estimation, both for the nominal and the uncertain cases.  相似文献   

3.
This paper concerns the asynchronously switched control problem for a class of switched linear systems with average dwell time (ADT) in both continuous-time and discrete-time contexts. The so-called asynchronous switching means that the switchings between the candidate controllers and system modes are asynchronous. By further allowing the Lyapunov-like function to increase during the running time of active subsystems, the extended stability results for switched systems with ADT in nonlinear setting are first derived. Then, the asynchronously switched stabilizing control problem for linear cases is solved. Given the increase scale and the decrease scale of the Lyapunov-like function and the maximal delay of asynchronous switching, the minimal ADT for admissible switching signals and the corresponding controller gains are obtained. A numerical example is given to show the validity and potential of the developed results.  相似文献   

4.
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.  相似文献   

5.
This paper is concerned with the design of a high-order repetitive control (RC) law for a class of discrete-time linear switched systems with repetition-varying reference trajectories. First, a high-order RC law, which embeds the characteristic of known variation of the reference trajectories, is proposed to the system, and a two-dimensional (2D) model is presented to describe the control and learning actions of the repetitive control system by using the lifting technique. By choosing appropriate multiple Lyapunov–Krasovskii functions, sufficient conditions for asymptotic stability of the 2D system are derived in the form of a set of linear matrix inequalities. Finally, an example is given to illustrate the effectiveness of the proposed results.  相似文献   

6.
The problem of robust stability for switched linear systems with all the subsystems being unstable is investigated. Unlike the most existing results in which each switching mode in the system is asymptotically stable, the subsystems may be unstable in this paper. A necessary condition of stability for switched linear systems is first obtained with certain hypothesis. Then, under two assumptions, sufficient conditions of exponential stability for both deterministic and uncertain switched linear systems are presented by using the invariant subspace theory and average dwell time method. Moreover, we further develop multiple Lyapunov functions and propose a method for constructing multiple Lyapunov functions for the considered switched linear systems with certain switching law. Several examples are included to show the effectiveness of the theoretical findings.  相似文献   

7.
In this paper, the problem of dynamic output-feedback control synthesis is addressed for discrete-time switched linear systems under asynchronous switching. The proposed hybrid controller consists of a standard dynamic output-feedback switching control law and an impulsive reset law induced by controller state jumps. Using the average dwell time technique incorporating with multiple quadratic Lyapunov functions, the switching control synthesis conditions for asymptotic stability with guaranteed weighted ?2-gain performance are derived as a set of linear matrix inequalities (LMIs). The proposed hybrid synthesis scheme advances existing design methods for output-feedback asynchronous switching control of switched linear systems in two important aspects: LMI formulation of the synthesis problem; and arbitrary order of the controller state. A numerical example is used to illustrate the effectiveness and advantages of the proposed design technique.  相似文献   

8.
In this paper, the stability analysis problem for a class of switched positive linear systems (SPLSs) with average dwell time switching is investigated. A multiple linear copositive Lyapunov function (MLCLF) is first introduced, by which the sufficient stability criteria in terms of a set of linear matrix inequalities, are given for the underlying systems in both continuous-time and discrete-time contexts. The stability results for the SPLSs under arbitrary switching, which have been previously studied in the literature, can be easily obtained by reducing MLCLF to the common linear copositive Lyapunov function used for the system under arbitrary switching those systems. Finally, a numerical example is given to show the effectiveness and advantages of the proposed techniques.  相似文献   

9.
This article is concerned with the problem of fault detection and isolation (FDI) for discrete-time switched linear systems based on the average dwell-time method. The proposed FDI framework consists of a bank of FDI filters, which are divided into N groups for N subsystems. The FDI filters belonging to one group correspond to the faults for a subsystem, and generate a residual signal to guarantee the fault sensitivity performance for the subsystem, the fault attenuation performance for other subsystems and the disturbance attenuation performance for all subsystems. Different form employing the weighting matrices to restrict the frequency ranges of faults for each subsystem, the finite-frequency H ? performance for switched systems is first defined. Sufficient conditions are established by linear matrix inequalities (LMIs), and the filter gains are characterised in terms of the solution of a convex optimisation problem. Two examples are used to demonstrate the effectiveness of the proposed design method.  相似文献   

10.
This paper addresses the stability problem of switched positive linear systems with stable and unstable subsystems. Based on a multiple linear copositive Lyapunov function, and by using the average dwell time approach, some sufficient stability criteria of global uniform exponential stability are established in both the continuous-time and the discrete-time cases, respectively. Finally, some numerical examples are given to show the effectiveness of the proposed results.  相似文献   

11.
A new method to find an upper bound on dwell time and average dwell time for switched linear systems is proposed. The method is based on computing the maximum cycle ratio and the maximum cycle mean of the directed graph that governs switchings. For planar switched systems, an upper bound for dwell time and average dwell time can be estimated by considering only the cycles of length two.  相似文献   

12.
The problem of stability is studied in this paper for a class of discrete-time switched systems with unstable subsystems. Two new definitions of slow switching and fast switching on the basis of admissible edge-dependent average dwell time are proposed, respectively. Some conditions are established by using multiple Lyapunov function method to guarantee the global uniform exponential stability of discrete-time switched systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed results.  相似文献   

13.
构造离散时滞切换系统的不变集,提出基于N步不变集的切换控制器设计方法,估计执行器饱和非线性的吸引域范围。首先,考虑时滞的影响,选取依赖于时滞的Lyapunov函数,构造时滞切换系统的不变集,并将其表达为若干个椭球集的凸组合,椭球集的个数与时滞常数相关。其次,在系统的前N个采样时刻,分别施加不同的饱和约束,求解得到一组椭球集,椭球集的个数与常数N相关,而每一步计算得到的椭球集均为时滞切换系统的不变集。再将N个不变集用一组凸包系数拟合,即可获取较大的吸引域估计。最后,在满足平均驻留时间约束的条件下设计切换律,并设计状态反馈控制器,保证闭环系统渐近稳定。控制器的求解转化为线性矩阵不等式的可行性问题。仿真结果验证了所提方法的可行性和有效性。  相似文献   

14.
In this paper, an adaptive iterative learning control (ILC) method is proposed for switched nonlinear continuous-time systems with time-varying parametric uncertainties. First, an iterative learning controller is constructed with a state feedback term in the time domain and an adaptive learning term in the iteration domain. Then a switched nonlinear continuous-discrete two-dimensional (2D) system is built to describe the adaptive ILC system. Multiple 2D Lyapunov functions-based analysis ensures that the 2D system is exponentially stable, and the tracking error will converge to zero in the iteration domain. The design method of the iterative learning controller is obtained by solving a linear matrix inequality. Finally, the efficacy of the proposed controller is demonstrated by the simulation results.  相似文献   

15.
ABSTRACT

In this paper, we discuss a new problem of static output feedback controllers design for positive systems with delayed output measurements. When delayed output measurements are exclusively used as feedback control signals, previous control design methods for positive systems relying on the so-called delay-independent positivity and stability conditions are unable to synthesise a stable static output feedback controller for positive systems. A new method based on delay-dependent positivity and stability conditions is proposed in this paper to tackle this issue. We show that the synthesis of static output feedback controllers for positive systems under the effect of delayed output measurements is feasible under the newly proposed design method. Numerical examples are given to demonstrate the effectiveness of the new result.  相似文献   

16.
In this paper, the problem of stabilisation analysis for switched neutral systems based on sampled-data control and average dwell time approach is investigated. Delay-dependent stabilisation results are derived in terms of linear matrix inequalities by constructing piecewise Lyapunov–Krasovskii functional based on the Wirtinger's inequality. Also, the controller gain matrix is designed by applying an input-delay approach. Further convex combination technique and some integral inequalities are used to derive less conservative results. The effectiveness of the derived results is validated through numerical examples.  相似文献   

17.
This paper considers the problem of finite-time event-triggered extended dissipative control for a class of discrete time switched linear systems. The proposed system is modeled as a discrete time switched linear system with an event-triggered control scheme. Under the event-triggered transmission schemes, we give some sufficient conditions to guarantee the finite-time extended dissipative performance of the closed-loop switched system in terms of linear matrix inequalities. Furthermore, the state feedback controller gains are proposed by solving a set of linear matrix inequalities. Finally, a numerical example is given to show the effectiveness of the proposed methods.  相似文献   

18.
An observer-based fault tolerant control (FTC) framework is proposed for a class of periodic switched non-linear systems (PSNS) without full state measurements. Two kinds of faults are considered: continuous faults that affect each mode during its dwell period; and discrete faults that affect the switching sequence. Under the average dwell time scheme, the proposed FTC framework can maintain the stability of overall PSNS in spite of these two kinds of fault. A switched reluctance motor example is taken to illustrate the efficiency of the proposed method.  相似文献   

19.
ABSTRACT

This paper is devoted to study the stability of switched singular stochastic linear systems with both stable and unstable subsystems. By using the method of multiple Lyapunov functions and the notion of average dwell time, we provide sufficient conditions for the exponential mean-square stability of switched singular stochastic systems in terms of a proper switching rule and the linear matrix inequalities. An example is given to illustrate the effectiveness of the obtained results.  相似文献   

20.
This paper addresses the stabilisation problem for a class of positive switched nonlinear systems under asynchronous switching, which means that the switches between the candidate controllers and the system modes are not synchronous. The continuous and discrete cases are considered respectively. Sufficient conditions are firstly provided for the existence of the asynchronous switching controllers to guarantee the closed-loop system to be positive and exponentially stable, and the corresponding admissible switching signals are presented. As a special case, the stabilisation results for positive switched linear systems under asynchronous switching are provided accordingly. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号