首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Biofiltration of reduced sulfur compounds such as hydrogen sulfide has been mainly applied to emissions at mild temperatures (25 to 35 °C). However, an important number of industrial gaseous emission containing sulfur compounds, from diverse industrial sectors (petroleum refinery, cellulose production, smelting, rendering plants and food industries) are emitted at temperatures over 50 °C. Most of the studies on thermophilic systems report that a higher elimination capacity can be obtained at elevated temperature, allowing the design of smaller equipment for the same loading rate than that required for removing the same load under mesophilic conditions. A biotrickling filter inoculated with Sulfolobus metallicus, which operates at three different residence times, 60, 80 and 120 s, and two different temperatures (45 and 55 °C) for treating H(2)S is reported. The input loads of H(2)S were progressively increased from 0 to 100 gS/m(3). The aim of this study was to determine the capacity and ability of S. metallicus to oxidize H(2)S at high temperatures. The better removal capacity of H(2)S obtained was 37.1 ± 1.7 gS/m(3) h at 55 °C for a residence time of 120 s. The difference of the removal capacity of H(2)S between the two temperatures was 4 g/m(3) h on average of sulfur removal for the different residence times.  相似文献   

2.
In this study, C.I. Reactive Red 2 (RR2) was removed from aqueous solutions by chitin. Exactly how the RR2 concentration, chitin dosage, pH, and temperature affected adsorption of RR2 by chitin was then determined. After reaction for 120 min, the amount of 10 and 20 mg/L RR2 absorbed onto chitin was 5.7 and 7.5 mg/g, respectively. The adsorption percentage increased from 56 to 94% when the chitin dosage was increased from 1.5 to 2.5 g/L. Experimental results indicated that the pseudo-second-order model best represents adsorption kinetics. Adsorption of RR2 increased as the temperature increased; however, it decreased with an increased pH. Experimental results further demonstrated that the Freundlich model is superior to the Langmuir model in fitting experimental isotherms. The ΔH° and ΔS° were 16.34 kJ/mol and 152.10 J/mol K, respectively. ΔH° suggested that adsorption of RR2 onto chitin was via physisorption.  相似文献   

3.
Nanosized titanium dioxides were synthesized by hydrolysis of TiCl(4) followed by calcination at different temperatures ranging from 300 to 1,000 °C. The as-prepared samples were characterized by X-ray diffraction, N(2) adsorption-desorption, and zeta potential analysis. The catalytic activities of the TiO(2) nanoparticles were tested by catalytic ozonation of trace 4-chloronitrobenzene (4-CNB) in water. Moreover, the catalytic ozonation activity of a sample calcined at 400 °C (denoted as T400) was tested in aqueous solution using electron paramagnetic resonance (EPR) spin trapping technique with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trap. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, in contrast the BET surface areas decreased. However, the isoelectric point (IEP) first increased, and then decreased. The ozone adsorption on the catalyst surface played an important role in determining their catalytic activity. Sample T400 with the IEP of 7.0, farthest away from the 4-CNB solution pH value (pH = 5.3), showed the best catalytic activity. The EPR experiments further confirmed that the hydroxyl radicals TiO(2)-catalyzed ozonation followed a radical-type mechanism.  相似文献   

4.
通过对凹凸棒石进行湿法提纯和酸处理改性提高凹凸棒石的纯度、比表面积和吸附性能;将提纯改性后的凹凸棒石作为载体,以硼氢化钾作为还原剂,在氩气保护下采用离子交换法制备凹凸棒石纳米铁复合材料,解决纳米铁稳定性差、容易凝聚成团的问题,从而增大纳米铁与污染物反应的有效面积。与纳米铁相比,凹凸棒石纳米铁复合材料较稳定,易于保存。以地下水中常见的硝酸盐为目标污染物,探讨了将凹凸棒石纳米铁复合材料应用到可渗透反应墙技术、抽出处理技术及注入修复技术中的方法。应用研究成果表明,经上述技术处理后,地下水硝酸盐浓度可得到有效去除。  相似文献   

5.
6.
Pretreatment of an acid dyebath effluent bearing a new generation chromium complex azo dyestuff (C0 = 350 mg/L) with Fenton's reagent was investigated. Preliminary optimisation (baseline) experiments were conducted to determine the Fe2+, H2O2 concentrations and pH required to the highest possible COD and colour removals. Kinetic studies were carried out at varying temperatures (20 degrees C < T < 70 degrees C) to establish a relationship between COD abatement and H2O2 consumption. The activation energy found for catalytic H2O2 decomposition (Ea = 9.8 kJ/mol) appeared to be significantly less than that of fermentative (Ea = 23 kJ/mol) and of thermal (Ea = 76 kJ/mol) H2O2 decomposition, implying that H2O2 decomposition during the Fenton's reaction occurs more spontaneously. The experimental studies indicated that approximately 30% COD and complete colour removal could be achieved under optimised Fenton pretreatment conditions (Fe2+ = 2 mM; H2O2 = 30 mM; pH = 3; at T = 60 degrees C). Long-term activated sludge experiments revealed that although the raw and pretreated acid dyebath effluent contained practically the same amount of "readily biodegradable" COD (inert COD fraction < or = 10%), biodegradation of the chemically pretreated acid dye effluent proceeded appreciably faster than that of the untreated acid dyebath effluent.  相似文献   

7.
Among many remediation techniques for metal ion removal, polymeric adsorbents are efficient and widely applied. This has made them comparable with other remediation techniques in terms of technical and economic efficiency, feasibility as well as green technology. This study was dedicated to the development of an insoluble modified chelating polymer for use as an adsorbent for abstraction of uranium from wastewaters. Cross-linked polyethylenimine (CPEI) was phosphonated by phosphorous acid for selective removal of uranium ions. The binding affinity of the phosphonated cross-linked polyethylenimine (PCPEI) to uranium ions was assessed as well as its ability to be regenerated for reuse. It exhibited high removal percentage for uranium ions up to 99% with high selectivity even in the presence of competing ions (Mn, Ni, As). The Freundlich isotherm was found to be the best fit describing the adsorption process of uranyl ions onto the PCPEI. The pseudo-second-order equation was found to better explain the adsorption kinetics, implying chemisorption. The thermodynamic study of the adsorption revealed high activation energies which confirmed the chemisorption as the mechanism of adsorption.  相似文献   

8.
Dye wastewaters usually contain toxins and high chroma, making them difficult to treat with biological methods. The adsorption process plays an important role in removing dyes from wastewaters. This study aimed to explore the methylene blue (MB) adsorption mechanism by wine-processing waste sludge (WPWS). The WPWS contains a high cation-exchange capacity (64.2 cmol(c) kg(-1)) and organic matter (52.8%). The parameters affecting MB adsorption included pH, initial concentration of MB, reaction temperature, particle size and dosage of WPWS. The WPWS adsorption isotherms of MB were only well described by Langmuir adsorption isotherm. The maximum adsorption capacity (Q(m)) of MB was 285.7 mg g(-1) at 25 °C. The activation energy determined by Arrhenius equation is 29.995 kJ mol(-1). Under steady-state reaction conditions, the Gibb free energy (ΔG°) ranged from -24.607 to -27.092 kJ mol(-1) and ΔH° was -8.926 kJ mol(-1), indicating that lower reaction temperature would favor MB adsorption. Therefore, MB adsorption by WPWS was a spontaneous, exothermic and physisorption reaction.  相似文献   

9.
改性生物炭的光谱表征及砷的吸附效果研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究棉花秸秆生物炭的基本性质及其对砷的吸附效果,采用FeCl3·6H2O改性棉花秸秆生物炭,通过XRD、FT-IR和SEM等技术表征其光谱性能,并探究其对砷的吸附效果。结果表明:采用FeCl3·6H2O改性棉花秸秆生物炭后,生物炭的pH值、比表面积以及C、N、H元素的含量和C/N的比值随Fe含量的提高显著降低,灰分和O元素的含量以及H/C、O/C和(N+O)/C的比值随Fe含量的提高显著增加,生物炭表层Fe2O3和Fe3O4的含量增加。生物炭改性后缩短了吸附砷的平衡时间,吸附率高达73.4%,远高于未改性生物炭的吸附率(44.7%),吸附量高达7.63 mg/g,远高于未改性生物炭的吸附量(4.33 mg/g),且随Fe含量的提高,吸附率和吸附量均显著增加。其作用机制主要是通过改性生物炭静电吸附能力、离子交换和Fe3+的还原作用降低水溶液中的As的含量,进而达到去除水溶液中As的目的。  相似文献   

10.
In this study, the effects of the coating temperature during the preparation of manganese-coated sand (MCS) and iron-coated sand (ICS) on the removals of As(III) and As(V) were evaluated. The mineral type of manganese oxide on MCS-150, prepared at 150 °C, was identified as a mixture of pyrolusite and ramsdellite, which changed to high crystalline pyrolusite above 300 °C. The mineral type of ICS-150, prepared at 150 °C, was a mixture of goethite and hematite, which changed to high crystalline goethite above 300 °C. The adsorption efficiency was determined according to the mineral type which depended on the coating temperature. The As(III) oxidation efficiency of MCS-150 and As(V) adsorption efficiency of ICS-150 were approximately 77 and 70% higher compared with those of MCS-600 and ICS-600, respectively, prepared at 600 °C. Regardless of the coating temperature, the amounts of manganese and iron coated on the sand substrates were similar.  相似文献   

11.
This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H(2)O(2) and Na(2)S(2)O(8); Fe(2+), Fe(3+), and Co(2+) were used to activate these two oxidants. The effects of oxidant concentration (0.3-2 mmol/L) and temperature (25-55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H(2)O(2)/Fe(2+), UV/H(2)O(2)/Fe(3+), UV/Na(2)S(2)O(8)/Fe(2+) and UV/Na(2)S(2)O(8)/Fe(3+) systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.  相似文献   

12.
13.
The experimental results indicated that without the TiO2 particles and PCO treatment, the permeate flux of ultrafiltration (UF) membrane declined to 40% of the initial permeate flux after 8 hours filtration. Feeding the humic acid solution with TiO2 particles dosage of 1 g/L with calcium ions into UF membrane, after the same filtration time and PCO reaction at 120 minutes, the permeate flux was increased to about 90% of the initial permeate flux. At longer PCO reaction times, a better water quality of UF permeate was observed. It has been found that with the coexistence of calcium ions in humic acid solution, the smaller molecular fragments of humic acid (HA) generated by PCO reaction may be transferred to the surface of TiO2 by means of adsorption. The humic acid adsorption by TiO2 in the presence of Ca2+ is also pH dependent. The adsorption rates were 21.0, 14.9 and 10.8 ppmTOC/gTiO2 for pH value of 4, 7 and 10 respectively. The combination of effects of PCO mineralization of humic acid into CO2 and adsorption of humic acid by TiO2 through the forming of HA-Ca(2+)-TiO2 aggregate particles were responsible for the removal of humic acid foulant from UF membrane surface.  相似文献   

14.
为了给开挖岩质边坡生态修复技术的选择和生态修复效果评价提供理论与技术支撑,以宜昌求索众创中心开挖岩质边坡生态修复项目为对象,研究了植被混凝土生态防护技术和防冲刷基材(PEB)生态护坡技术施工方案的主要区别以及工程竣工后1个月和5个月的生态修复效果。结果表明,两种生态修复技术施工方案主要在基材基层材料配比、锚固方式以及施工方法上存在不同。生态修复效果在竣工初期没有太大差别。但经过一段时间的生长,植物根系一旦穿过基材表层以后,防冲刷基材生态护坡技术的植物生长状况明显优于植被混凝土生态防护技术。今后在开挖岩质边坡生态修复中,对于边坡坡度小于50°的稳定开挖岩质边坡应优先选择防冲刷生态护坡技术,以取得较好的生态效益和经济效益;当坡度较大时则考虑选用植被混凝土生态防护技术。  相似文献   

15.
采用吸附等温方程、扫描电镜以及红外光谱仪等测试分析方法对红色链霉菌废菌体吸附废水中Pb2+的机理进行分析和探讨。结果表明,强碱的处理可以明显提高废菌体的吸附性能;红色链霉菌细胞壁上的—COO—、C—H和O—H可能是吸附铅离子的主要基团;红色链霉菌吸附Pb2+的过程可能是一个以表面络合反应为主的物理化学吸附过程。  相似文献   

16.
In a beamhouse, liming plays a key role in the removal of hair/wool and epidermis, but problems are created when waste liming sludge is discharged to the environment. The treatment of tannery wastewater is another major challenge to the industry. In this study, thermally-activated biochars derived from liming sludge were studied for their effective adsorption of chromium (Cr) from the tannery wastewater. The thermally activated biochars (B500, B550, B600, and B650) were prepared at different temperatures from the liming sludge. Their characteristics before and after the treatment were investigated using Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, and scanning electron microscopy analyses. The related functional groups (C–H, O–H, C–N, and =C–O) and chromium adsorption capacity were determined according to the surface morphology, element contents (C, O, Ca, Na, Al, Mg, and Si), surface area (5.8–9.2 m2/g), pore size (5.22–5.53 nm), and particle size (652–1 034 nm) of the experimental biochars. The biochar originated at 600°C from the tannery liming sludge (B600) had a greater surface area with a chromium adsorption capacity of 99.8% in comparison to B500, B550, and B650 biochars. This study developed an innovative way of utilizing liming sludge waste to minimize the pollution load and wastewater treatment cost in the tannery industry.  相似文献   

17.
A quantitative analytical method was used for detection of low level of volatile sulfur compounds (VSCs) using GC with a sulfur chemiluminescence detector (SCD) in this study. A linear response over the range of 2-90 ngS injected was obtained with a good repeatability or reproducibility. Equimolar response for H2S, DMS, MeSH, and EtSH was obtained by use of SCD and the response of the SCD is nearly equimolar for different sulfur compounds. It was possible to quantify the total VSCs as well as individual VSC using one of the standard VSCs. VSC recovery was measured with respect to some storing methods. An adsorption tube packed with molecular sieve 5A showed almost perfect recovery for both H2S and dimethyl sulfide (DMS) during 6 days at a dark state below 2 degrees. Whereas, with a gas tight pyrex vial or tedlar bag, it was impossible to obtain the recovery of 50% after 6 days. It is strongly recommended to use the adsorption tube for determination of nanogram levels of volatile sulfur compounds and for storing and concentrating VSCs effectively with a minimum experimental error.  相似文献   

18.
In this study an agricultural residue, sesame stalk, was evaluated for the removal of Ni(II) and Zn(II) metal ions from aqueous solutions. Biosorption studies were carried out at different pH, biosorbent dosage, initial metal ion concentrations, contact time, and solution temperature to determine the optimum conditions. The experimental data were modeled by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Langmuir model resulted in the best fit of the biosorption data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and to evaluate rate constants. The best correlation was provided by the second-order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The experimental results showed that sesame stalk can be used as an effective and low-cost biosorbent precursor for the removal of heavy metal ions from aqueous solutions.  相似文献   

19.
The application of almond shell as a low cost natural adsorbent to remove Hg(2+) from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg(2+) uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG(0), ΔH(0) and ΔS(0), indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg(2+) removal from a synthetic effluent.  相似文献   

20.
粉末活性炭(PAC)对2-MIB的吸附过程更接近于Freundich吸附等温模式。用树脂富集方法将松花江水中的天然有机物(NOM)分为憎水性酸(HOA)、憎水性碱(HOB)、憎水中性物(HON)、亲水酸(HIA)、亲水碱(HIB)、亲水中性物(HIN)等六类,原水中有机碳的回收率为84.7%(以TOC计)。不同组分NOM不同程度地降低了PAC的吸附容量。以松花江水为本底,利用等背景化合物模式进行试验,结果表明,活性炭的吸附容量与2-MIB初始浓度成正比。利用HSDM模型能很好地预测PAC吸附松花江原水中2-MIB的动力学过程,在PAC投加量适当的情况下,吸附时间为4h时的吸附量占吸附平衡总量的70%左右,与实测结果接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号