首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines mechanical properties of 50–300 nm gold thin films deposited onto micrometer-thick flexible polymer substrates by means of tensile testing of the film–substrate system and modeling. The film properties are extracted from mechanical testing of the film–substrate system and modeling of the bimaterial. Unlike materials in bulk geometry, the film elastic modulus and yield strength present an important dependence with film thickness, with modulus and yield strength of about 520 and 30 GPa, respectively, for the thinner films and decreasing toward the bulk value as the film thickness increases. The relation between grain size, film thickness, and yield strength is examined. Finite element analysis provides further insight into the stress distribution in the film–substrate system. L. Llanes—MS student at ITM, Merida, Mexico.  相似文献   

2.
A. Patra 《Thin solid films》2009,518(5):1399-6926
Gold nanoparticles (AuNPs) embedded ZnO thin films were prepared by sandwiching a thin thermally evaporated Au film between two sputtered ZnO films. The films were characterized by high resolution transmission electron microscopy (HRTEM), glancing angle X-ray diffraction (GXRD), optical absorption and photoluminescence (PL) measurements. GXRD data exhibited peaks which were attributed to the reflections from various ZnO and Au planes. Size dependence of the plasmon absorption was studied by forming nanoparticles with various sizes. Optical absorption spectra showed strong absorption due to localized surface plasmons at about 608, 638 and 676 nm for films having average AuNPs sizes of 27, 40 and 67 nm respectively. AuNPs embedded ZnO film showed a strong reduction in the intensity of photoluminescence, which was prominent in the case of pure ZnO film. The rise in temperature at a single nanoparticle site was calculated to be 22 K for a particle size of 80 nm.  相似文献   

3.
Gold nanoparticles were prepared in aqueous colloidal solutions and their interaction with L-arginine solutions at different concentrations was investigated by UV-vis spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The shift towards red of the absorption maximum of gold nanoparticles with increasing L-arginine concentration and in time, and the apparition of a new large band at higher wavelength evidence the formation of assemblies of gold nanoparticles, mediated by the amino acid. TEM images present the progress in the building process of supermolecular structures. Further, the AFM images show the self assemblies of gold nanoparticles capped with L-arginine well ordered in large domains on silanized glass. As a model for the process, we suggest that the positively charged guanidinium group of L-arginine is anchored on the negative citrate capped gold nanoparticles, while the other two functionalities of L-arginine are involved in the bonding between gold nanoparticles. The ability of arginine to specifically bind gold nanoparticles could lead to an increased ability of proteins, containing arginine, to specifically bind to nanogold. Then, they bind other target proteins or different ligands underlying numerous biological and medical applications that range from nanoscale biosensors, cell-cell communications to targeted delivery of drugs to cancer cells.  相似文献   

4.
5.
Pulsed laser deposition of ZnO thin films, using KrF laser, is analysed. The films were deposited on (001) sapphire substrates at 400 °C, at two different oxygen pressures (0·3 and 0·4 mbar) and two different target–substrate distances (30 and 40 mm). It is observed that in order to obtain good quality in the photoluminescence of the films, associated with oxygen stoichiometry, it is needed to maximize the time during which the plasma remains in contact with the growing film (plasma residence time), which is achieved by selecting suitable combinations of oxygen pressures and target to substrate distances. It is also discussed that for the growth parameters used, the higher probability for ZnO films growth results from the oxidation of Zn deposited on the substrate and such process takes place during the time that the plasma is in contact with the substrate. Moreover, it is observed that maximizing the plasma residence time over the growing film reduces the rate of material deposition, favouring the surface diffusion of adatoms, which favours both Zn–O reaction and grain growth.  相似文献   

6.
Galvanic displacement (GD), a type of electroless deposition, has been used to obtain ultrasmooth gold thin films on silicon <111>. The novel aspect of the method presented herein is the absence of fluoride ions in the liquid phase, and its principal advantage when compared to previous efforts is that the process is inherently self-limiting. The self-limiting factor is due to the fact that in the absence of fluorinated species, no silicon oxide is removed during the process. Thus, the maximum gold film thickness is achieved when elemental silicon is no longer available once the surface is oxidized completely during the galvanic displacement process. X-ray photoelectron spectroscopy has been used as a tool for thickness measurement, using the gold to silicon ratio as an analytical signal. Three gold plating solutions with different concentrations of KAuCl? (2, 0.2, and 0.02 mM) have been used to obtain information about the formation rate of the gold film. This XPS analysis demonstrates the formation of gold films to a maximum thickness of ~3.5 ?. Atomic force microscopy is used to confirm surface smoothness, suggesting that the monolayer growth does not follow the Volmer-Weber growth mode, in contrast to the GD process from aqueous conditions with fluorinated species.  相似文献   

7.
Layers of Au nanoparticles (NPs) were formed in films of yttria stabilized zirconia (YSZ) on fusedquartz substrates by layer-by-layer magnetron deposition with subsequent annealing. The obtained structures were studied by applying high-resolution transmission electron microscopy (TEM) to transverse sections and using optical absorption spectroscopy. TEM studies revealed the formation of Au NPs with a diameter of 2?3 nm concentrated in a thin layer within the YSZ film. The optical absorption spectra of the studied samples exhibited peaks of resonance plasmon absorption in Au NPs with a maximum wavelength of ~650 nm. The dependences of geometric and structural parameters of Au NP arrays (size, density, thickness of the Au NP layer, etc.) on the formation conditions were determined, and the regimes of fabrication of dense Au NP arrays that allow for collective plasmon excitations were identified.  相似文献   

8.
High amount of gold nanoparticles was successfully incorporated into amorphous BaTiO3 thin films by sol-gel process. Thiourea was applied to prevent Au ions from being reduced and aggregating as the effective stabilization agents. These films exhibited unique surface plasma resonance red-shifting and particular changes of surface plasma resonance intensity with the increase of heat-treating temperature, which could be attributed to the influence of BaTiO3 ferroelectric domains. The films also exhibited superfast nonlinear optical response and larger third-order nonlinear susceptibility (3), which was attributed to hot electron contribution.  相似文献   

9.
Absorption spectra of gold nanoisland thin film and the composite film of gold having thin coating of Methylene Blue and Rh6G dyes have been studied. Thin gold nanoisland film shows surface plasmon resonance (SPR) peak in the visible wavelength range, which shifts to near infrared with an increase in the thickness of the film. It was found that thin film of gold consists of nanoparticles of different size and shape, particularly nanorods of noncylindrical shapes. A linear relation was found between SPR peak wavelength and the aspect ratio of the nanoparticles in gold thin film. Effective medium refractive index of the gold film is estimated to be ~2.5, which decreases with an increase in film thickness. The coating of dyes on gold films splits the SPR peak with an enhanced absorption. Enhancement in absorption of composite film is maximal when the dye absorption peak coincides with the SPR peak; otherwise enhancement in transmission is observed for all the wavelength range. Absorption amplitude of composite film peaks increase with an increase in the gold film thickness, which tend toward saturation for film thickness of ≥6 nm. A correlation shows that absorption spectra can be described by the Maxwell Garnett theory, when the gold nanoparticles have a nearly spherical shape for very thin film (≤6 nm).  相似文献   

10.
A method of temperature control for selenization process conducted in vacuum quartz tube furnace with radial energy transfer and a movable sample holder has been described. Selenization of metallic precursors to obtain CuInSe2 absorber layer of a photovoltaic cell requires a special approach to the temperature regulation, where two-stage heating process is necessary. The modular process control system was developed in which the first module playing a supervising role was built in LabVIEW environment and the second one, called a predictor, was built in MATLAB. Relatively quick movement of the holder from the cold to the hot regions of the furnace allows for a rapid change of sample temperature, typical of rapid thermal processing processes.  相似文献   

11.
By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.  相似文献   

12.
Y Gan  J Shi  S Jiang 《Applied optics》2012,51(24):5946-5951
An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.  相似文献   

13.
Absorption, photoluminescence and Raman scattering spectroscopies have been performed on two kinds of SiO2 bulk matrices and sol-gel polymeric thin films, containing CdS nanoparticles. Waveguiding in the polymeric CdS films has been demonstrated for wavelengths in the visible region. A simple surface energy diagram, including defect levels, has been used to explain the size-selective luminescence of the nanocrystals. The luminescence spectrum is composed of an excitonic recombination band and a broader red-shifted band, imputed to the transition between the surface trap levels. The particle interaction with the silica xerogels appears to enhance these surface states. Resonance Raman scattering shows that the excitons are coupled to LO-phonon modes, but the spectra exhibit no matrix effect on the frequency vibration of the fundamental LO phonon.  相似文献   

14.
Fluorescent dyes in solid matrices have many potential applications provided that their high optical efficiencies are achieved. We present here gold nanoparticles formed and incorporated together with fluorescent dye Rhodamine B into a film of polyvinyl alcohol (PVA). The increase of fluorescence of the dye results from its interaction with surface plasmons. The electric charge on the gold nanoparticles and the distance between them and the dye molecules has a significant effect on the fluorescence intensity. Fluorescence enhancement of 74% was achieved for the negatively charged particles. Dynamic measurements reveal decrease of fluorescent lifetimes of the dye in presence of gold nanoparticles. Our findings enable utilization of films with enhanced fluorescence in optical materials such as luminescence solar concentrators, solid state tunable laser and active waveguides.  相似文献   

15.
Electric current was passed through thin gold films deposited onto molybdenum surfaces. The edge of the gold film closer to the cathode was seen to move towards the anode, leaving a free molybdenum surface. Large hillocks and crystallites were seen to accumulate on the gold edge pointing toward the anode. The velocity of the film edge was assumed to represent the average drift velocity for electromigration.The velocity of the gold edge was found to be constant at any given temperature and current density. At any constant temperature, the velocity was proportional to the current density. Finally, the velocity depended exponentially on the temperature.Current densities of 105–106 Acm-2 were used at temperatures of 260°–500°C. The “activation energy” for the drift velocity was found to be 0.6 eV in most samples, while some samples showed an energy of about 0.9eV. The drift velocities per unit current density ranged between 10-13 and 10-15 cm3 A-1 s-1 and the gold motion was always in the direction of electron flow.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

17.
Creatinine thin films were synthesised by matrix assisted pulsed laser deposition (PLD) techniques for enzyme-based biosensor applications. An UV KrF* (λ = 248 nm, τ∼10 ns) excimer laser source was used for the irradiation of the targets at incident fluence values in the 0.3–0.5 J/cm2 range. For the matrix assisted PLD the targets consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. The surface morphology, chemical composition and structure of the obtained biomaterial thin films were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and electron dispersive X-ray spectroscopy as a function of the target preparation procedure and incident laser fluence.  相似文献   

18.
InGaZnO thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
We fabricated InGaZnO (IGZO) ceramic target (In: Ga: Zn = 1: 1: 4 in atomic ratio) using solid-state reaction at ambient atmosphere, and deposited IGZO thin films on quartz glass at room temperature under various oxygen partial pressures using the pulsed laser deposition method. Influence of oxygen pressure on crystal structure, surface morphology, optical and electrical properties were investigated. It was found that all the films deposited at room temperature exhibit amorphous structure. On the other hand, the physical properties of the films like transparency, electron mobility, and free-electron concentration were found to be correlated to the oxygen pressure during the deposition and in turn to the possible oxygen vacancies or metallic interstitials in the films. The analysis of X-ray photoelectron spectra (XPS) of the films indicated that there are no metallic 3d states of In, Ga and Zn, suggesting that oxygen vacancies could be main defects that affect physical properties of the films.  相似文献   

19.
Thin films of the superconductive YBa2 Cu3O7–k have been deposited on SrTiO3 substrates by means of a pulse laser ablation technique, with variable substrate temperature, number of pulses and repetition rate of the laser beam. High substrate temperatures and low rates of repetition resulted in good quality superconducting films.  相似文献   

20.
Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation. An UV KrF* excimer laser source was used in the experiments at 0.5 J/cm2 incident fluence value, diminished one order of magnitude as compared to irradiation of inorganic materials. The surface morphology of the obtained thin films was studied by atomic force profilometry and atomic force microscopy. The investigations showed that the growth mode and surface quality of the deposited biomaterial thin films is strongly influenced by the target preparation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号