首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钙钛矿型中低温固体氧化物燃料电池阴极材料研究进展   总被引:4,自引:0,他引:4  
中低温固体氧化物燃料电池的研制是固体氧化物燃料电池商业化的必然趋势,阴极材料的研制是影响其发展的关键问题之一.本文综述了近年来固体氧化物燃料电池ABO3型钙钛矿阴极材料的研究情况,并提出了其发展方向.  相似文献   

2.
La(1-x)Ca(x)FeO3 (X = 0.0, 0.2, 0.4, abbreviated as LCF) as cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC) was synthesized by new route of glycine nitrate method. LCF materials were characterized by X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), electrical and electrochemical impedance spectroscopy (EIS). The powder LCFs exhibited single phase with orthorhombic structure, highly porous and small nanoparticles with average size of 200-300 nm. The electrical conductivities of LCFs increased as increasing the Ca content and achieved the maximum electrical conductivity of 148 Scm(-1) for La0.6Ca0.4FeO3 (X = 0.4) at 550 degrees C. The improved conductivity of LCFs could be a promising cathode material for IT-SOFCs. In the impedance analysis of fabricated symmetry cell with the optimized La0.6Ca0.4FeO3 cathode and Ce0.8Sm0.2O3 (SDC) electrolyte, the minimum area specific resistance (ASR) of 0.15 omegacm2 was observed at 850 degrees C, which may due to the lowest activation energy (1.55 eV), resulting from the reduction of oxygen molecules into oxygen ions. It was found that calcium doping was essential to increase the charge carrier concentration of lanthanum iron oxide materials, resulting in the high conductivity at intermediate temperature.  相似文献   

3.
汪杰  颜冬  朱彬  池波  蒲健  张宜生  李箭 《功能材料》2011,42(5):951-954
为了制备高性能大面积固体氧化物燃料电池(SOFC)单电池,解决由于面积过大而导致的单电池上气体分配不均匀及各部分温度差异,通过实验设计测试了单电池的各个区域的性能,包括局部电性能和局部温度.实验在1片10cm×10cm(有效反应面积9cm×9cm)的阳极支撑SOFC单电池上进行,电池的阴极以及空气气体分配板和集流器都被...  相似文献   

4.
5.
Materials for lower temperature solid oxide fuel cells   总被引:5,自引:0,他引:5  
The solid oxide fuel cell (SOFC) continues to show great promise for the generation of electricity for an increasing range of applications. The present SOFC technology is based on an all-ceramic design, which eliminates the corrosion problems associated with fuel cells containing liquid electrolytes. To obtain good electrochemical performance with the currently used materials, this all-ceramic fuel cell operates at 1000°C. Despite a significant amount of research and several successful demonstrations at the 100 kW level, commercialisation of the technology is not as rapid as anticipated. This is, in part, due to the high operating temperatures required, necessitating the use of expensive materials. As a result of these problems, there has been an effort over the past few years to lower the SOFC operating temperature. This paper will address the issues concerning the development of new materials that can operate at lower temperatures. Many of these issues have been or are being addressed in the research performed at Argonne National Laboratory, and some recent results will be discussed.  相似文献   

6.
Several spinel compositions, i.e. Mn1+x Cr2−x O4 (x = 0.7, 0.5, 0), MnFe x Cr2−x O4 (x = 0.1, 1), MgMnCrO4 and Mg1+x Cr2−x O4 (x = 0, 0.1) were synthesised and studied in terms of phase analysis, density, stability in reducing atmosphere, electrical conductivity and thermal expansion behaviour. The spinel samples were single phase, with cell parameter values in a good correlation with cation sizes. Most of the studied spinels were found to be unstable under reducing conditions of thermal treatment, except MnCr2O4, MgCr2O4 and Mg1.1Cr1.9O4. Electrical properties have been investigated by impedance spectroscopy and DC conductivity measurements at temperatures between 200 and 900 °C.  相似文献   

7.
A purification method based on HCl treatment under reflux was employed for purification of carbon nanotube (CNT) samples, obtained by the electric discharge method utilizing Zr(Co0.5Ni0.5)2, Ce3(Co0.5Ni0.5)2 and Ce(Co0.5Ni0.5)5 as catalysts. Raman Spectroscopy provided information on the SWCNT presence in the untreated samples. Scanning Electron Microscopy (SEM) showed CNT with different diameters and lengths. Different acid treatment conditions were employed and the best results were achieved for HCl 3 mol/L aqueous solution during 24 h reflux. Transmission Electron Microscopy (TEM) images, associated with EDS, revealed the catalyst removal from the original sample and the presence of other carbon structures near the CNT formation. CNT acid functionalization for Pt nanoparticles dispersion was successful, resulting in a homogeneously dispersed system, as seen in TEM images. Temperature Programmed Oxidation (TPO) analysis of the raw and purified samples indicated that after purification there are three different carbon species present on the purified material, each one showing a different behavior towards O2 oxidation.  相似文献   

8.
Ni-based anode materials of solid oxide fuel cells (SOFCs) are susceptible to carbon deposition and deactivation in direct hydrocarbon fuels, greatly limiting the commercialization. Extensive studies on finding new alternative anode materials have been developed; however, new problems such as low electrochemical performance and complex cell preparation process destroyed the further research passion of Ni-free anode materials. Considering the superior catalytic activity and mature technology of Ni-based anode materials, a large number of recent research results proved that it is still important and promising to solve the carbon coking of Ni-based anode materials. In this review, progress in four typically promising Ni-based anode materials free from carbon coking has been summarized, including the noble metals, ceria, Ba-containing oxides and titanium oxide. Correspondingly, the mechanisms that improve the carbon tolerance of Ni-based modified SOFCs anodes are clearly concluded, providing the materials and theoretical basis for the use of direct hydrocarbon SOFCs as early as possible.  相似文献   

9.
In this work, a multi-layer anode supported solid oxide fuel cell (SOFC) is designed and successfully prepared through sequential tape casting and co-firing. The single cell is consisted of NiO-3YSZ (3YSZ: 3 mol.% yttria doped zirconia) anode support, NiO-8YSZ (8YSZ: 8 mol.% yttria stabilized zirconia) anode functional layer, dense 8YSZ electrolyte layer, and porous 3YSZ cathode scaffold layer with infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The clear interfaces and good contacts between each layer, without element inter-diffusion being observed, suggest that this sequential tape casting and co-firing is a feasible and successful route for anode supported single cell fabrication. This cell exhibits remarkable high open circuit voltage of 1.097 V at 800°C under room temperature humidified hydrogen, with highly dense and gastight electrolyte layer. It provides a power density of 360 mW/cm2 under operation voltage of 0.75 V at 800°C and a stable operation of ~110 h at 750°C under current density of ?300 mA/cm2. Furthermore, this cell also presents encouraging electrochemical responses under various anode hydrogen partial pressures and maintains high power output at low fuel concentrations.  相似文献   

10.
采用微波无机合成技术制备固体氧化物燃料电池(SOFC)阴极材料La1-xSrxMnO3,表征了结构和性能,研究了微波功率、反应时间和原料粒度等微波合成条件对其性能的影响,以及合成La1-xSrxMnO3的反应机理.  相似文献   

11.
Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) cermet anode was fabricated for solid oxide fuel cells (SOFCs) by conventional ceramic processing using NiO-YSZ composite particles. Microstructures of the anode were carefully characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ni-YSZ cermet anode was consisting of fine YSZ connections, as the conducting pass of oxygen ions, on the surface of Ni network, as that of electrons, with continuous pore structure and as that of gaseous species. No amorphous phases were present at the interface between Ni and YSZ, and there was an orientation relationship between Ni and YSZ grains, (111)Ni//(111)YSZ. The cermet anode showed a high electrical performance at 800 °C. These results indicated that the electrochemical activity of the Ni-YSZ cermet anode was enhanced with the present microstructure.  相似文献   

12.
A review of anode materials development in solid oxide fuel cells   总被引:3,自引:0,他引:3  
High temperature solid oxide fuel cell (SOFC) has prospect and potential to generate electricity from fossil fuels with high efficiency and very low greenhouse gas emissions as compared to traditional thermal power plants. In the last 10 years, there has been significant progress in the materials development and stack technologies in SOFC. The objective of this paper is to review the development of anode materials in SOFC from the viewpoint of materials microstructure and performance associated with the fabrication and optimization processes. Latest development and achievement in the Ni/Y2O3-ZrO2 (Ni/YSZ) cermet anodes, alternative and conducting oxide anodes and anode-supported substrate materials are presented. Challenges and research trends based on the fundamental understanding of the materials science and engineering for the anode development for the commercially viable SOFC technologies are discussed.  相似文献   

13.
能源危机和环境污染是全世界在可持续发展道路中所面临的难题。固体氧化物燃料电池(SOFC)具有高能量转化效率和低污染排放,被认为是未来能源经济的基石。其中,以质子导体作为电解质的固体氧化物燃料电池(H-SOFC)由于具有高燃料利用率、高理论电动势、高离子迁移数以及低传导活化能,因而备受关注。然而,与氧离子导体固体氧化物燃料电池(O-SOFC)相比,H-SOFC的材料选择和理论体系还处于初级阶段,尤其是H-SOFC的阴极。在H-SOFC中,氢气在阳极被氧化,形成质子,通过电解质迁移到阴极,而后与氧进行电极反应生成水,其阴极的电极过程比O-SOFC更为复杂。寻找高性能的阴极材料和探索H-SOFC中的阴极反应机理,对于H-SOFC的发展具有重要的意义。围绕质子导体阴极材料的发展进行深入调研,着重阐述和总结了不同传导类型的阴极材料的电化学行为及其反应模型,为H-SOFC阴极材料的发展和应用提供了一种思路。  相似文献   

14.
The aim of this work is to analyze nature gas-fed internal reforming solid oxide fuel cell system. The system consists of ejector, heater exchanger, solid oxide fuel cell (anode and cathode) and afterburner, and models by Aspen PlusTM. A parametric analysis also performed to evaluate the effect of various parameters such as the current density, the operating temperature, the operating pressure, the fuel utilization factor, the air utilization factor and the S/C ratio on system performance.  相似文献   

15.
中温固体氧化物燃料电池的Ag-YSB复合阴极   总被引:4,自引:0,他引:4  
用草酸盐共沉淀法制备了Y0 25Bi0.75O1.5(YSB),用X-ray衍射方法考察了其成相温度,用交流阻抗法测试了其电导率.与Ag复合制成复合阴极,研究了烧结温度对复合阴极微结构的影响.同时以Sm0.2Ce0.8O1.9(SDC)为电解质,用交流阻抗法研究YSB含量对复合阴极界面阻抗的影响.用草酸盐共沉淀制备的YSB粉,其电导率比SDC大得多.Ag-YSB复合阴极疏松多孔,Ag-YSB与SDC的界面结合良好,形成了足够多的三相界面,降低了界面极化电阻.YSB有一个最佳添加量,电阻最小,即电极界面性能最高.YSB的过量添加损坏Ag相的连续性,降低氧的还原转化速度,使界面的电阻增大.  相似文献   

16.
胡晨  刘韩星  甘小燕  欧阳世翕 《功能材料》2004,35(Z1):1851-1853
对LiNiO2派生物LiNixCo1-xM0.05O2(M=Al,Mn,Ti)的性能进行了研究.采用了溶胶-凝胶法(Sol-gel)合成了KLiNixCo1-xM0.05O2(M=Al,Mn,Ti),采用XRD表征其晶体结构,均为层状结构;采用扫描电镜(SEM)观察产物的晶体形貌,粉末颗粒细小,粒径约为0.3~0.5μm.充放电测试表明,合成的LoiNixCo1-xAl0.05O2的循环性能比较好,LiNi0.7Co0.25Mn 0.05O2的初始容量较高.  相似文献   

17.
18.
Some high-temperature alloys have been investigated in order to determine whether they are suitable as metallic interconnect materials in solid oxide fuel cell stacks. The requirements for such alloys are formulated. Thermal dilatometry and oxidation tests, as well as theoretical calculations of the stresses that are induced by differences in thermal expansion of the individual materials, have been performed. The results show that a chromium-rich alloy, with dispersions of fine Y2O3 particles, perform best among the samples investigated. Improvements are still needed in order to make the alloy fully applicable in a solid oxide fuel cell stack. Some suggestions for improvements are put forward.  相似文献   

19.
The oxidation behaviour and the phase transformations associated with high temperature exposure of a commercial ferritic interconnect steel, Crofer 22 H, was studied in a simulated solid oxide fuel cell (SOFC) anode atmosphere at 700 °C. Special emphasis was placed on the formation of the intermetallic sigma phase. No sigma phase was detected in the bulk alloy after 500 h of exposure of bare specimens. However, specimens which were pre-coated with a layer of nickel showed formation of an interdiffusion zone after as little as 2 h of exposure and sigma phase formation occurred after 10 h. The presence of the nickel layer, which simulates the contact between ferritic steel interconnects and a nickel mesh in a SOFC results in the formation of an austenitic zone and accelerated formation of a σ-phase rich layer at the ferrite/austenite interface. The ferritic steel is transformed into austenite due to the inward diffusion of nickel, σ-phase started to nucleate at the transformed austenite grain boundaries. The nucleation is enhanced by an increased Cr/Fe-ratio at that interface due to more pronounced diffusion of Fe, compared to Cr, in the direction of the Ni-layer. Different possible mechanisms for the nucleation and growth of σ-phase were identified. The experimental results led to the conclusion that sigma nucleates in the austenite and grows following an isothermal eutectoid-like decomposition. The kinetics of σ-phase formation and the depth of the interdiffusion zone were found to follow a traditional diffusion relationship. It was observed that as the Ni-concentration increases the sigma-phase re-dissolves and thus the zone which, contains sigma phase moves deeper into the ferritic steel with exposure time. Interdiffusion processes between the nickel layer and the ferritic steel result not only in accelerated formation of σ-phase but also in the formation of Cr-rich oxides within the nickel layer.  相似文献   

20.
In the past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cell (SOFC) down to about 700 °C. In this respect, materials with a high ionic conduction at intermediate temperature have to be found and the processes to elaborate fuel cells, using these new materials, have to be developed.Apatite materials (La10−xSrx(SiO4)6Oδ) are attractive candidates for solid electrolyte working at intermediate temperature. The ceramic powder was produced by solid state reaction and was tape cast to obtain green sheets.Concerning the cathode, a perovskite oxide (La1−xSrxMn1−yCoyO3−δ) has been chosen. The perovskite powder was also shaped by tape casting with the introduction of a pore forming agent (corn-starch) to obtain the required porosity in the sintered cathode.The co-firing of the electrolyte/cathode half-cell in air at 1400 °C-2 h gives a flat sample with a dense apatite (98.2%), a 42.7% porous cathode and neither delamination nor chemical reactivity between electrolyte and cathode materials.The dimensional behaviour of the electrolyte material is stable for an oxygen partial pressure ranging from 10−10 to 0.21 atmosphere, from room temperature to 700 °C. The thermal expansion coefficients of the electrolyte and cathode materials are rather close (Δα = 2.8 × 10−6 K−1) under air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号