首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
靶向性磁共振成像造影剂的研究进展   总被引:1,自引:0,他引:1  
俞开潮  万福贤  杨献  张焱 《化学试剂》2004,26(6):329-332,352
综述了靶向性磁共振成像造影剂的研究进展,着重介绍了近年来在设计与合成具有靶向给药功能造影剂的研究概况,分别列出了亲脂性基团、VB6族化合物及其衍生物、糖类等功能基团作为靶向基团的水溶性顺磁性造影剂的配体结构。  相似文献   

2.
Macromolecular Gd(III) complexes are advantageous over small molecular Gd(III) complexes in contrast enhanced magnetic resonance imaging (MRI) because of their prolonged blood circulation and preferential tumor accumulation. However, macromolecular contrast agents have not been approved for clinical applications because of the safety concerns related to their slow body excretion. Polydisulfide Gd(III) complexes have been designed and developed as biodegradable macromolecular MRI contrast agents to alleviate the concerns by facilitating the clearance of Gd(III) complexes from the body. These agents initially behave as macromolecular agents and result in superior contrast enhancement in the vasculature and tumor tissues. They can then be readily degraded in vivo into small molecular chelates that can rapidly excrete from the body via renal filtration after the MRI examinations. Various polydisulfide Gd(III) complexes have been prepared as biodegradable macromolecular MRI contrast agents. These agents have resulted in strong contrast enhancement in the vasculature and tumor tissue in animal models with minimal long-term tissue accumulation comparable to small molecular contrast agents. Polydisulfide Gd(III) complexes are promising for further clinical development as safe and effective biodegradable macromolecular MRI contrast agents for cardiovascular and cancer imaging. The review summarizes the chemistry and properties of polydisulfide Gd(III) complexes.  相似文献   

3.
Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.  相似文献   

4.
Novel magnetic resonance imaging (MRI) contrast agents composed of multiwalled carbon nanotubes decorated with magnetic iron oxide nanoparticles were explored. They were functionalized with multilayer polyelectrolytes through layer-by-layer assembling and were shown to be hydrophilic, biocompatible, and have a high MRI contrast. A targeted ligand folic acid was chemically bonded to the functionalized nanotubes for specific targeting and imaging of cancer cells in MRI. The results demonstrate that the material can be used as ideal targeted imaging agents and is sufficient to obtain strong MRI contrast.  相似文献   

5.
Magnetic resonance imaging (MRI) is widely used to identify different diseases. MRI contrast agents, used to enhance the MRI signal, have been studied extensively for precise diagnosis. Based on the advantages of macromolecular MRI contrast agents of higher contrast imaging ability and a longer cycle time, this article modified the most common micromolecular contrast agent (Gd‐diethylene triamine pentaacetic acid [DTPA]). 2 long saturated aliphatic chains were attached to both sides of DTPA. DTPA derivatives with 12, 14, and 16 carbon lengths were synthesized and chelated to Gd3+. 3 amphiphilic MRI contrast agents were obtained and their structures were characterized using mass spectrometry, 1H NMR, and Fourier transform infrared. Furthermore, the surface tension of the compounds was measured, and liposomes were prepared by mixing the synthesized amphiphilic molecules with egg lecithin and cholesterol. The assembly behavior of the liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements. TEM showed that the liposomes possessed bilayer vesicle structures. The liposome size distribution determined by DLS was from 10 to 1000 nm, and as the aliphatic chain length increased, the polydispersity index (PDI) and zeta potential increased. No obvious changes in the PDI and zeta potential of the liposomes were observed after 5 days at room temperature, suggesting that they possess good stability.  相似文献   

6.
Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents.  相似文献   

7.
Scientific interest in optimizing the properties of gadolinium (III) complexes as MRI contrast agents has led to many new insights into lanthanide ion coordination chemistry in the last two decades. Among these was the surprising observation that water exchange in lanthanide (III) derivatives of DOTA can be modulated dramatically by judicious choice of ligand side chain and Ln(3+) ionic radii. This resulted in the discovery of paramagnetic CEST agents for altering MRI image contrast based upon the chemical exchange saturation transfer mechanism. The goal of this article is to review the factors that govern water molecule and water proton exchange in these complexes and to compare the potential sensitivity of PARACEST agents versus Gd(3+)-based T(1) relaxation agents for altering tissue contrast.  相似文献   

8.
Magnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages. Among existing contrast agents, smart or activatable nanoprobes can respond to selective stimuli, such as proving the presence of acidic pH, active enzymes, or reducing environments. The recently developed environment-responsive or smart MRI nanoprobes can specifically target cells based on differences in the cellular environment and improve the contrast between diseased tissues and normal tissues. Here, we review the design and application of these environment-responsive MRI nanoprobes.  相似文献   

9.
Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.  相似文献   

10.
The aim of research is to develop potential tumor‐targeted circulation‐prolonged macromolecular magnetic resonance imaging (MRI) contrast agents without the use of low molecular gadolinium (Gd) ligands. The contrast agents were based on polymer–metal complex nanoparticles with controllable particle size to achieve the active and passive tumor‐targeted potential. In particular, poly (amidoamine) (PAMAM) dendrimer with 32 carboxylic groups was modified with folate‐conjugated poly (ethyleneglycol) amine (FA‐PEG‐NH2, Mw: 2 k and 4 kDa). FA‐PEG‐PAMAM‐Gd macromolecular MRI contrast agents were prepared by the complex reaction between the carboxylic groups in PAMAM and GdCl3. The structure of FA‐PEG‐PAMAM‐COOH was confirmed by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared (FTIR) spectra, and electrospray ionization mass spectra (ESI‐MS). The mass percentage content of Gd (III) in FA‐PEG‐PAMAM‐Gd was measured by inductively coupled plasma‐atomic emission spectrometer (ICP‐AES). The sizes of these nanoparticles were about 70 nm measured by transmission electron microscopy, suggestion of their passive targeting potential to tumor tissue. In comparison with clinically available small molecular Gadopentetate dimeglumine, FA‐PEG‐PAMAM‐Gd showed comparable cytotoxicity and higher relaxation rate, suggestion of their great potential as tumor‐targeted nanosized macromolecular MRI contrast agents due to the overexpressed FA receptor in human tumor cell surfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Superparamagnetic iron-oxide particles (SPIO) are used in different ways as contrast agents for magnetic resonance imaging (MRI): Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite), different coatings (none, dextran, carboxydextran, polystyrene) and different hydrodynamic diameters (20-850 nm) for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC), which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe(3)O(4) particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.  相似文献   

12.
Superparamagnetic iron-oxide particles (SPIO) are used in different ways as contrast agents for magnetic resonance imaging (MRI): Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite), different coatings (none, dextran, carboxydextran, polystyrene) and different hydrodynamic diameters (20–850 nm) for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC), which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.  相似文献   

13.
The simultaneous detection of multiple enzyme activities can improve the specificity of disease diagnoses. We therefore synthesized and characterized a diamagnetic chemical exchange saturation transfer (CEST) MRI contrast agent that can simultaneously detect two enzyme activities. Sulfatase and esterase enzymes cleave the ligands of the CEST agent, releasing salicylic acid that can be detected with CEST MRI. Importantly, both enzymes are required to activate the agent to produce a CEST MRI contrast, and the CEST agent was stable without enzyme treatment. These results established that this diamagnetic CEST MRI contrast agent is a platform technology with a modular design that can be potentially exploited to detect other combinations of enzyme activities, which can expand the armamentarium of contrast agents for molecular imaging.  相似文献   

14.
Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.  相似文献   

15.
Nuclear magnetic resonance imaging (MRI) has become a powerful technique in clinical diagnostics. In this work, a new MRI contrast agent by covalently linking Gd(III) chelates to the side chain of conjugated polymer (PF-Gd) is synthesized by Suzuki cross-coupling reaction. The PF-Gd exhibits a higher relaxivity and a pronounced enhancement in contrast than that of (NMG)2-Gd-DTPA widely used for clinical diagnosis. This work should be feasible to potentially lead to a new class of imaging contrast agents.  相似文献   

16.
17.
Amiri H  Mahmoudi M  Lascialfari A 《Nanoscale》2011,3(3):1022-1030
We report cell endocytosis, drug release, NMR relaxometry and in vitro MRI studies on a novel class of superparamagnetic colloidal nanocrystal clusters (CNCs) with various biocompatible coatings. It is shown that the transverse relaxivity r2, the parameter representing the MRI efficiency in negative contrast agents, for the PVA-coated, PEGF-coated, and crosslinked PEGF-coated CNCs, is high enough to contrast suitably the magnetic resonance images. The same samples have shown a good ability also in drug releasing (particularly the crosslinked PEGF-coated compound), thus finally allowing us to propose this class of compounds for future applications in theranostics.  相似文献   

18.
Lanthanide‐binding tags (LBTs), peptide‐based coexpression tags with high affinity for lanthanide ions, have previously been applied as luminescent probes to provide phasing for structure determination in X‐ray crystallography and to provide restraints for structural refinement and distance information in NMR. The native affinity of LBTs for Gd3+ indicates their potential as the basis for engineering of peptide‐based MRI agents. However, the lanthanide coordination state that enhances luminescence and affords tightest binding would not be ideal for applications of LBTs as contrast agents, due to the exclusion of water from the inner coordination sphere. Herein, we use structurally defined LBTs as the starting point for re‐engineering the first coordination shell of the lanthanide ion to provide for high contrast through direct coordination of water to Gd3+ (resulting in the single LBT peptide, m‐sLBT). The effectiveness of LBTs as MRI contrast agents was examined in vitro through measurement of binding affinity and proton relaxivity. For imaging applications that require targeted observation, fusion to specific protein partners is desirable. However, a fusion protein comprising a concatenated double LBT (dLBT) as an N‐terminal tag for the model protein ubiquitin had reduced relaxivity compared with the free dLBT peptide. This limitation was overcome by the use of a construct based on the m‐sLBT sequence (q‐dLBT–ubiquitin). The structural basis for the enhanced contrast was examined by comparison of the X‐ray crystal structure of xq‐dLBT–ubiquitin (wherein two tryptophan residues are replaced with serine), to that of dLBT‐ubiquitin. The structure shows that the backbone conformational dynamics of the MRI variant may allow enhanced water exchange. This engineered LBT represents a first step in expanding the current base of specificity‐targeted agents available.  相似文献   

19.
Fluorine magnetic resonance imaging (19F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19F nucleus. In recent years, scientists have synthesized various 19F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.  相似文献   

20.
The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号