首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
利用透射电子显微镜对铋掺杂钛酸锶陶瓷晶界结构进行表征, 在某些晶界处观测到不连续分布的纳米颗粒, 尺寸为十几至一百多纳米, 形状各有迥异. 能谱分析结果表明这些纳米颗粒为金属铋. 采用Cahn-Hoffman ξ矢量构建模型可以把晶界纳米颗粒形状定性地描述为相邻晶粒内两个独立平衡形状(Wulff形状)在晶界处的交集, 两个平衡形状中心间的距离与晶界能相当. 晶界纳米颗粒的平衡形状与两个独立平衡Wulff形状本身特征、相邻两侧晶粒的晶体学取向、晶界能和晶界的倾转以及颗粒本身尺寸等因素相关.  相似文献   

2.
The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers.  相似文献   

3.
Noble metal nanoparticles (NPs) possess size- and shape- dependent optical properties, suggesting the possibility of tuning desired optical properties of ensemble NPs at single NP resolution and underscoring the importance of probing the sizes and shapes of single NPs in situ and in real-time. In this study, we synthesized twelve colloids of Ag NPs. Each colloid contains various sizes and shapes of single NPs, showing rainbow colors with peak-wavelength of absorption spectra from 393 to 738 nm. We correlated the sizes and shapes of single NPs determined by high-resolution transmission electron microscopy (HRTEM) with scattering localized surface plasmon resonance (LSPR) spectra of single NPs characterized by dark-field optical microcopy and spectroscopy (DFOMS). Single spherical (2-39 nm in diameter), rod (2-47 nm in length with aspect ratios of 1.3-1.6), and triangular (4-84 nm in length with thickness of 2-27 nm) NPs show LSPR spectra (λ(max)) at 476±5 or 533±12, 611±23, and 711±40 nm, respectively. Notably, we observed new cookie-shaped NPs, which exhibit LSPR spectra (λ(max)) at 725±10 nm with a shoulder peak at 604±5 nm. Linear correlations of sizes of any given shape of single NPs with their LSPR spectra (λ(max)) enable the creation of nano optical rulers (calibration curves) for identification of the sizes and shapes of single NPs in solution in real time using DFOMS, offering the feasibility of using single NPs as multicolored optical probes for study of dynamics events of interest in solutions and living organisms at nm scale in real time.  相似文献   

4.
The purpose of this study was to investigate the effects of size and phase composition on human exposure to airborne titanium dioxide (TiO(2)) nanoparticles (NPs) at workplaces. We reanalyzed published data of particle size distribution of airborne TiO(2) NPs during manufacturing activities and linked a physiologically based lung model to estimate size- and phase-specific TiO(2) NP burdens in target lung cells. We also adopted a cell model to simulate the exposure time-dependent size/phase-specific cell uptake of TiO(2) NPs in human dermal and lung cells. Combining laboratory, field, and modeling results, we proposed two major findings: (i) the estimated median effective anatase TiO(2) NP concentration (EC50) for cytotoxicity response on human dermal fibroblasts was estimated to be 24.84 (95% CI: 7.3-70.2) nmolmL(-1) and EC50 estimate for inflammatory response on human lung epithelial cells was 5414 (95% CI: 3370-7479) nmolmL(-1) and (ii) packers and surface treatment workers at the TiO(2) NP production workplaces are unlikely to pose substantial risk on lung inflammatory response. Nevertheless, our findings point out that TiO(2) NP production workers have significant risk on cytotoxicity response at relatively high airborne anatase TiO(2) NP concentrations at size range 10-30nm.  相似文献   

5.
Crack-free TiO(2) nanotube (NT) membranes were obtained by short time re-anodization of a sintered TiO(2) NT array on Ti foil, followed by dilute HF etching at room temperature. The resulting freestanding TiO(2) membranes were opaque with a slight yellow color having one end open and another end closed. The membranes were then fixed on transparent fluorine-tin-oxide glass using a thin layer of screen-printed TiO(2) nanoparticles (NPs) as a binding medium. It was found that low temperature treatment of the resulting NT/NP film under appropriate pressure before sintering at 450?°C was critical for successful fixation of the NT membrane on the NP layer. The resulting films with open-ends of NT membranes facing the NP layer (open-ends down, OED, configuration) exhibited better interfacial contact between NTs and NPs than those with closed-ends facing the NP layer (closed-ends down, CED, configuration). The cells with an OED configuration exhibit higher external quantum efficiency, greater charge transfer resistance from FTO/TiO(2) to electrolyte, and better dye loading compared to CED configurations. The solar cells with the OED configuration gave 6.1% energy conversion efficiency under AM1.5G condition when the commercial N719 was used as a dye and I(-)/I(3)(-) as a redox couple, showing the promise of this method for high efficiency solar cells.  相似文献   

6.
Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in the peak wavelengths for square- and triangular-shaped NPs. The LSPR spectra of disk-shaped Ag NP pairs with varying interparticle distances were acquired from five different locations across the pair axis. It was clearly observed that the LSPR wavelength redshifts as the interparticle distance decreases, indicating a strong interaction when two Ag NPs are close to each other.  相似文献   

7.
Solid Zn and V nanoparticles (NPs) embedded in silica were elongated by swift heavy ion (SHI) irradiation with 200 MeV Xe(14+) ions to a fluence of 5.0 × 10(13) ions cm(-2). Isochronal annealing was carried out in a vacuum from 200 to 1000 °C in steps of 100 °C for 10 min each. The degree of shape elongation was evaluated at room temperature (RT) by two different optical methods: linear dichroism spectroscopy and birefringence spectroscopy. In the as-irradiated state, the samples showed an absorption band at 5 eV due to radiation-induced defects in the silica in addition to the anisotropic absorption due to the elongated metal NPs. After annealing at 400 °C the defect band had completely disappeared, while the degree of shape elongation was almost unchanged or rather slightly increased in both the Zn and V NPs. The elongation of the Zn NPs slightly decreased but maintained a certain value after annealing at 500 °C, which is much higher than the melting point (MP) of Zn NPs (~420 °C). This observation indicates that shape elongation is mostly maintained even if the Zn NPs are in the molten state to some extent during annealing. The elongation of the Zn NPs was almost eliminated after annealing at 600 °C. In the case of the V NPs, elongation was maintained up to 800 °C but mostly eliminated at 900 °C. Since the recovery temperature of 900 °C from the elongated to the spherical shape is much lower than the MP of bulk V (1890 °C), we consider that the elongation is eliminated without melting of V NPs, i.e. via solid state mass transportation. The melting of NPs is not the key factor for the recovery to the spherical shape.  相似文献   

8.
The present study presents the synthesis details of titanium dioxide (TiO2) nanoparticles (NPs) of different morphologies using oleic acid (OA) and oleyl amine (OM) as capping agents. Different shapes of NPs, such as nanospheres, nanorods, and nanorhombics, were achieved. In order to develop nanocomposite thin films for photovoltaic cells, these TiO2 NPs were carefully dispersed in 2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEH-PPV) matrix. The properties of synthesized TiO2 NPs and MEH-PPV/TiO2 nanocomposites were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible spectroscopy, and Photoluminescence technique. Obtained results showed promising properties for photovoltaic devices, especially solar radiation absorption properties and charge transfer at the interface of the conjugated MEH-PPV matrix and TiO2 dispersed NPs.  相似文献   

9.
The titanium dioxide nanoparticles (TiO2·NPs) were synthesized utilizing Origanum vulgare under room temperature. The green synthesized TiO2 NPs excitation was confirmed using UV–Vis spectrophotometer at 320 nm. Scanning electron microscopy analysis showed TiO2·NPs are spherical in shape and connected with one another. Dynamic light scattering analysis results specified high stability in nanoparticles, with an average particle size of 341 nm. Fourier transform infrared spectroscopy peaks revealed the presence of bioactive functional groups in Origanum vulgare aqueous leaf extract much needed for the TiO2·NPs formation. X-ray diffraction spectra showed the TiO2·NPs are amorphous in nature. Furthermore, the green synthesized TiO2·NPs wound healing activity was examined in the excision wound model by measuring wound closure, histopathology and protein profiling, revealed significant wound healing activity in Albino rats. In conclusion, our results bared TiO2·NPs have delivered a novel therapeutic route for wound treatment in clinical practice.  相似文献   

10.
High spatial density ZnO nanopillars (NPs) have been fabricated on catalyst- and pattern-free Si wafers using atmospheric pressure metal organic chemical vapor deposition (APMOCVD) at a moderate temperature (500?°C). The nanopillar diameter is ~ 35 nm and the length is ~ 150 nm, with a density of ~ 2 × 10(9) cm( - 2). The growth evolution of the nanopillars, providing the (0001)(NP) ? (0001)(ZNO grain) ? (100)(Si surface) epitaxial relationship, is extensively studied by scanning and high resolution transmission microscopy. The approach to obtaining the ZnO 1D structures is explained in terms of selective homoepitaxial growth via the crystallographic anisotropy of the seeding layer. The advanced PL properties of ZnO NPs, e.g. indications of free excitonic and absence of defect emission, are related to their single crystalline nature within one pillar and most probably better stoichiometry and less contamination. The observed efficient monochromatic UV emission from the ZnO NPs at room temperature points toward their potential application as building blocks for nanoscale optoelectronic devices.  相似文献   

11.
Layers of Au nanoparticles (NPs) were formed in films of yttria stabilized zirconia (YSZ) on fusedquartz substrates by layer-by-layer magnetron deposition with subsequent annealing. The obtained structures were studied by applying high-resolution transmission electron microscopy (TEM) to transverse sections and using optical absorption spectroscopy. TEM studies revealed the formation of Au NPs with a diameter of 2?3 nm concentrated in a thin layer within the YSZ film. The optical absorption spectra of the studied samples exhibited peaks of resonance plasmon absorption in Au NPs with a maximum wavelength of ~650 nm. The dependences of geometric and structural parameters of Au NP arrays (size, density, thickness of the Au NP layer, etc.) on the formation conditions were determined, and the regimes of fabrication of dense Au NP arrays that allow for collective plasmon excitations were identified.  相似文献   

12.
We report on the successful preparation and characterization of fluorescent magnetic core∕shell Fe(3)O(4)∕ZnSe nanoparticles (NPs) with a spherical shape by organometallic synthesis. The 7 nm core∕3 nm shell NPs show good magnetic and photoluminescence (PL) responses. The observed PL emission∕excitation spectra are shifted to shorter wavelengths, compared to a reference ZnSe NP sample. A dramatic reduction of PL quantum yield is also observed. The temperature dependence of the magnetization for the core∕shell NPs shows the characteristic features of two coexisting and interacting magnetic (Fe(3)O(4)) and nonmagnetic (ZnSe) phases. Compared to a reference Fe(3)O(4) NP sample, the room-temperature Néel relaxation time in core∕shell NPs is three times longer.  相似文献   

13.
The properties of Cu-doped TiO(2) nanoparticles (NPs) were independently controlled in a flame aerosol reactor by varying the molar feed ratios of the precursors, and by optimizing temperature and time history in the flame. The effect of the physico-chemical properties (dopant concentration, crystal phase and particle size) of Cu-doped TiO(2) nanoparticles on inactivation of Mycobacterium smegmatis (a model pathogenic bacterium) was investigated under three light conditions (complete dark, fluorescent light and UV light). The survival rate of M. smegmatis (in a minimal salt medium for 2 h) exposed to the NPs varied depending on the light irradiation conditions as well as the dopant concentrations. In dark conditions, pristine TiO(2) showed insignificant microbial inactivation, but inactivation increased with increasing dopant concentration. Under fluorescent light illumination, no significant effect was observed for TiO(2). However, when TiO(2) was doped with copper, inactivation increased with dopant concentration, reaching more than 90% (>3 wt% dopant). Enhanced microbial inactivation by TiO(2) NPs was observed only under UV light. When TiO(2) NPs were doped with copper, their inactivation potential was promoted and the UV-resistant cells were reduced by over 99%. In addition, the microbial inactivation potential of NPs was also crystal-phase-and size-dependent under all three light conditions. A lower ratio of anatase phase and smaller sizes of Cu-doped TiO(2) NPs resulted in decreased bacterial survival. The increased inactivation potential of doped TiO(2) NPs is possibly due to both enhanced photocatalytic reactions and leached copper ions.  相似文献   

14.
Low-Loss Dielectric Mirror with Ion-Beam-Sputtered TiO 2-SiO 2 Mixed Films   总被引:3,自引:0,他引:3  
Chao S  Wang WH  Lee CC 《Applied optics》2001,40(13):2177-2182
Ion-beam-sputtered TiO(2)-SiO(2) mixed films with 17% SiO(2) concentration were used as high-refractive-index layers in a multilayered-stack dielectric mirror. Experimental results indicated that total loss of the as-deposited mirror was 34% lower than that of the as-deposited conventional mirrors with pure TiO(2) films used as high-refractive-index layers. In addition, annealing reduced total loss of the mirrors. Although decreasing with an increasing annealing temperature, total loss of the conventional mirrors dramatically increased above ~200 degrees C annealing temperature, owing to increased scattering from an amorphous-to-crystalline phase transition in the TiO(2) films. In addition, total loss of the mirrors with the mixed films continuously decreased with an increasing annealing temperature up to 400 degrees C without the phase transition. Total loss was reduced 88% by means of decreasing absorption in the mixed films. Moreover, the annealed mirror with mixed films was better than both the as-deposited mirror and the conventional mirror with pure films in terms of laser-damage resistance.  相似文献   

15.
P.K. Kuiri  J. Ghatak 《Vacuum》2010,85(2):135-138
SnO2 nanoparticles (NPs) of average diameter of ∼10.5 nm, synthesized in SiO2 using Sn ions implantation combined with thermal annealing, were irradiated with 1.5 MeV Au2+ ions at room temperature. The NP structure was studied as a function of ion fluence by transmission electron microscopy and micro-Raman spectroscopy. Prior to ion irradiation, SnO2 NPs have been found to exhibit the rutile crystal structure. Upon irradiation, amorphization in the nanocrystals has been seen to increase with increase in ion fluence. In particular, at a fluence of 1 × 1014 ions cm−2 we argue for the presence of an amorphous SnO2 phase. Beyond this fluence, the NPs have been found to dissolve in the matrix. The observed results are explained in the frame work of ion irradiation induced defects production in the NPs as well as in the NP/matrix interface.  相似文献   

16.
Patterning of nanoparticles (NPs) via photochemical reduction within thermally responsive hydrogel films is demonstrated as a versatile platform for programming light‐driven shape morphing and materials assembly. Responsive hydrogel disks, containing patterned metal NPs, form characteristic wrinkled structures when illuminated at an air/water interface. The resulting distortion of the three‐phase (air/water/hydrogel) contact lines induces capillary interactions between two or more disks, which are either attractive or repulsive depending on the selected pattern of light. By programming the shapes of the NP‐rich regions, as well as of the hydrogel objects themselves, the number and location of attractive interactions are specified, and the assembly geometry is controlled. Remarkably, appropriately patterned illumination enables sustained rotation and motion of the hydrogel disks. Overall, these results offer insight into a wide variety of shape‐programmable materials and capillary assemblies, simply by controlling the NP patterns and illumination of these soft materials.  相似文献   

17.
Pt nanoparticles (NPs) were synthesised by a modified polyol method with the addition of silver nitrate. The results showed that the specific shapes of Pt NPs were influenced by the relevant factors, which are the contents of silver nitrate, synthetic time and temperature. A small content of silver nitrate has played an important role in determining their final shapes of platinum NPs. We observed that Pt NPs in the forms of very sharp shapes such as Pt cubes, octahedrons, cuboctahedrons and tetrahedrons have been obtained. In addition, the shape growth mechanisms and formation of Pt NPs have been studied. They exist in both cubic and octahedral shapes. Importantly, Pt nanocrystals can grow into main cubic and octahedral shapes for a short time less than 15?min. Moreover, Pt nanocrystals can also grow into different shapes from cubic and octahedral into spherical ones for several hours. Especially, they exhibited interesting shapes of multiple-branched Pt nanostructures because of their overgrowth and aggregations. Clearly, large cubic and octahedral Pt NPs of 160?nm diameter were observed. The growth and formation of large cubic and octahedral Pt NPs were due to the aggregation of Pt clusters or initial Pt seeds, even small Pt nanocrystals.  相似文献   

18.
We report on the formation and optical properties of bottom-up photonic crystal (PC) cavities formed by III-V nanopillars (NPs) via catalyst-free selective-area metal-organic chemical vapor deposition on masked GaAs substrates. This method of NP synthesis allows for precise lithographic control of NP position and diameter enabling simultaneous formation of both the photonic band gap (PBG) region and active gain region. The PBG and cavity resonance are determined by independently tuning the NP radius r, pitch a, and height h in the respective masked areas. Near-infrared emission at 970 nm is achieved from axial GaAs/InGaAs heterostructures with in situ passivation by laterally grown InGaP shells. To achieve out-of-plane optical confinement, the PC cavities are embedded in polydimethylsiloxane (PDMS) and removed from the growth substrate. Spatially and spectrally resolved 77 K photoluminescence demonstrates a strong influence of the PBG resonance on device emission. Resonant peaks are observed in the emission spectra of PC cavities embedded in PDMS.  相似文献   

19.
An in situ optical microspectroscopy study of the surface plasmon resonance (SPR) evolution of Ag nanoparticles (NPs) embedded in thick SiO(2) films deposited on soda-lime glass has been conducted during thermal processing in air. The temperature and time dependences of the SPR were analyzed in the context of Mie extinction and crystal growth theories and were discussed along with consideration of oxidation processes and film/substrate physicochemical interactions. At relatively high temperatures, Ag NPs were indicated to grow first through a diffusion-based process and subsequently via Ostwald ripening. At lower temperatures, an initial decrease in Ag particle size was indicated due to oxidation, followed by NP diffusion-based growth. The growth and oxidation stages appeared temperature and time dependent, allowing for the tuning of material properties. The product of Ag NP oxidation was revealed by photoluminescence spectroscopy performed ex situ as single Ag(+) ions. The oxidative effect of the air atmosphere on Ag NPs was shown to be ultimately circumvented by the thick nanocomposite film. The phenomenon was explained on the basis of the displacement of the Ag/Ag(+) redox equilibrium toward Ag NP stability after ion migration toward the substrate being self-constrained. In addition, the current spectroscopic approach has been proposed for estimating the activation energy for silver diffusion in the SiO(2) matrix.  相似文献   

20.
通过电化学沉积法以TiO2纳米管阵列(TNTs)为基底制备CdSe/TiO2异质结薄膜。研究TiO2纳米管阵列基底不同退火温度(200,350,450,600℃)对CdSe/TiO2异质结薄膜光电化学性能的影响。采用SEM,XRD,UV-Vis,电化学测试等方法对样品的微观形貌、晶体结构、光电化学性能等进行表征。结果表明:立方晶型的CdSe纳米颗粒均匀沉积在TiO2纳米管阵列管口及管壁上。TiO2纳米管阵列未经退火及退火温度为200℃时,为无定型态,在TiO2纳米管阵列上沉积的CdSe纳米颗粒数量少,尺寸小,异质结薄膜光电性能较差,光电流几乎为零。随着退火温度升高到350℃,TiO2纳米管阵列基底开始向锐钛矿转变;且沉积在TiO2纳米管上的CdSe颗粒增多,尺寸增大,光电化学性能提高。退火温度为450℃时光电流值达到最大,为4.05mA/cm^2。当退火温度达到600℃时,TiO2纳米管有金红石相出现,CdSe颗粒变小,数量减少,光电化学性能下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号