首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
Process-induced residual stress arises in polymer composites as a result of mismatched resin contraction and fiber contraction during the cure stage. When a curved shell-like composite part is de-molded, the residual stress causes the spring-in phenomenon, in which the enclosed angle of the part becomes smaller than the angle of its mold. In this paper, a new approach is presented to control and reduce the spring-in angle by infusing a small amount of carbon nanofibers (CNFs) together with liquid resin into the glass fiber preform using vacuum assisted resin transfer molding (VARTM) process. The experimental results showed that the spring-in angles of the L-shaped composite specimens were effectively restrained by the CNFs. An analytical model and a 3-D FEA model were developed to predict the spring-in phenomenon and to understand the role of CNFs in reducing the spring-in angle. The models agreed with the experimental results reasonably well. Furthermore, the analytical model explains how the CNF-enhanced dimensional tolerance control is accomplished through the reductions in the matrix’s equivalent coefficient of thermal expansion and linear crosslinking shrinkage.  相似文献   

2.
为研究模具因素对复合材料纤维体积含量、富树脂以及固化变形的影响,利用热压罐工艺完成了T700/QY9611复合材料V型结构成型试验,对其纤维体积含量、富树脂厚度以及回弹变形进行测量与研究。建立了考虑热载荷、树脂收缩载荷、模具接触、纤维体积含量以及富树脂等因素的复合材料回弹变形预测三维有限元分析模型,定量分析了纤维体积含量梯度和富树脂对回弹变形的影响。研究结果表明:使用阴模模具产生10.0%的纤维体积含量梯度和2.2 mm的富树脂,拐角半径增大后分别减小为6.8%和1.2 mm,模具材料的影响较小;使用阴模成型试验件变形增大21.0%,使用拐角半径较大的阴模,变形减小了9.6%,阴模模具主要通过纤维体积含量和富树脂影响回弹变形;模拟结果表明:V型构件的变形与纤维体积含量梯度和富树脂厚度呈正比例,10%的纤维体积含量梯度导致13.5%的变形差异,3.0 mm厚的富树脂会产生45.8%的变形差异。模拟结果与实验结果对比验证了模型的准确性。  相似文献   

3.
Development of spring-in angle during cure of a thermosetting composite   总被引:1,自引:0,他引:1  
The development of spring-in angle during cure of AS4/8552 thermosetting composite is investigated by using a cure quench technique. C-shaped preforms are cured on the inner wall of an aluminium tube. The cure is interrupted at various points during the Manufacturer's Recommended Cure Cycle (MRCC) by quenching the tool tube into water. The diameters of the specimens cured in this way are measured and the spring-in angles for a 90° arc of the specimens are calculated. The test data show that the samples quenched at earlier stages of cure exhibit a larger spring-in and the spring-in angle reduces as the specimen is further cured.

A cure kinetics simulation is performed to understand the development of cure throughout the MRCC. It has been found that the vitrification of the specimen occurs approximately 45 min after the start of the 180 °C dwell period, and the specimens quenched before vitrification are observed to have larger spring-in.

An explanation of this observation is the fact that, before vitrification the specimen is in the rubbery state during the temperature range between the cure temperature and the instantaneous glass transition temperature, and in this state it has a larger thermal expansion coefficient compared to that in the glassy state, causing more contraction in the through-the-thickness direction, hence more spring-in.

The cure quench experiment provides an insight into the relative importance of the thermal contraction above and below the glass transition temperature and the cure shrinkage.  相似文献   


4.
Achievement of high class surface finish is important to the high volume automotive industry when using the resin transfer molding (RTM) process for exterior body panels. Chemical cure shrinkage of the polyester resins has a direct impact on the surface finish of RTM molded components. Therefore, resins with low profile additives (LPA) are used to reduce cure shrinkage and improve surface quality of the composite parts. However, little is known about the behaviour of low profile resins during RTM manufacturing and their ultimate effects on the surface quality of molded plaques. In this work, the effects of controlled material and processing parameters on the pressure variations, process cycle times and ultimately on the surface quality of RTM molded components were investigated. Taguchi experimental design techniques were employed to design test matrices and an optimization analysis was performed. Test panels were manufactured using a flat plate steel mold mounted on a press. Pressure sensors were inserted in the mold cavity to monitor pressure variations during different stages of cure and at various locations in the mold cavity. It was found that a critical amount of LPA (10%) was required to push the material against the mold cavity and to compensate for the resin cure shrinkage. A significant increase in pressure was observed during the later stages of resin cure due to the LPA expansion. The pressure increase had a significant effect on the surface roughness of the test samples with higher pressures resulting in better surface finish. A cure gradient was observed for low pressure injections which significantly reduced the maximum pressure levels.  相似文献   

5.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

6.
It is well known that angles in composite parts contract as they are cooled down from the curing temperature, this is often referred to as spring-in. It is caused mainly by the significantly different thermal contractions and cure shrinkage's experienced between the fibre direction and the through-thickness direction during the manufacturing process. A number of works have reported on the spring-in of straight angle composite parts. However, little has been done to investigate the distortion of curved flanged composite parts, which will distort differently owing to the introduction of the additional curvature, thus constraint.

In the present work, the distortion of the circularly curved flanged laminates is studied numerically. The finite element method is used to predict the processing-induced distortion of the part with two different approaches. In the first approach, the shear angles of the composite plies are predicted by a draping analysis. The effect of the fibre shearing on the mechanical properties of the laminates is considered in the model used to predict the distortion. The second simplified approach assumes that the in-plane properties of the laminates are isotropic. The results obtained by these two approaches are compared with those obtained experimentally.  相似文献   


7.
A novel approach has been developed to measure in situ the through-the-thickness strains during processing of epoxy composites. The technique captures the thermal expansion during the heating stages, the laminate consolidation throughout the cure process, and also the cure shrinkage. The tests were performed on 45 mm × 45 mm × 4 mm samples, for both unidirectional and cross-ply laminates. A ply pull-out technique was used to determine the position of the gel point of the AS4–8552 composite system for various curing temperatures. The relationship between the chemical shrinkage and the degree of cure was deduced from a cure kinetics model. Finally the relative contributions of cure shrinkage, thermal expansion and consolidation to the through-thickness strain were distinguished.  相似文献   

8.
王乾  关志东  王仁宇  蒋婷 《复合材料学报》2017,34(12):2722-2733
为研究结构参数对复合材料V型构件固化变形的影响,完成了针对V型构件厚度、拐角半径、拐角角度及铺层等结构参数的变形影响研究试验。基于剪力滞后理论和弯曲理论,利用解析法建立了考虑结构参数影响的复合材料V型构件固化变形预测模型,利用模型预测了V型构件的回弹变形并分析了不同结构参数对V型构件回弹变形的影响机制。结果表明:回弹变形随着厚度的增大而减小,厚度为1~3mm之间,角度回弹变形差异最大在30%左右;回弹变形与拐角角度的补角呈约为0.014的比例;拐角半径的不同导致变形的差异不超过5%;准各向同性铺层试验件展现了最大回弹变形,0°铺层的变形减小了23.5%,90°铺层几乎不发生变形。模型分析结果表明,厚度主要通过弯曲刚度和剪切变形两方面影响回弹变形;铺层引起的力学性能和泊松效应的变化是使回弹变形有较大区别的主要原因;V型构件直边变形最大为0.20°,对回弹变形影响较大。变形预测结果与试验结果对比验证了解析法模型的准确性。  相似文献   

9.
As the demand for precision composite parts increases, understanding the effects of processing parameters on composite precision is needed. This study is devoted to observing the warping tendency of angles and investigating the effects of the part thickness, tool material, and stacking orientation on the precision of angled composite parts. Composite parts with both concave and convex angles were fabricated with various thickness, tool material, and stacking orientation. It was found that composite angled parts always warped inward. As the part angle decreased, the warp angle decreased. The resin volume fraction gradient induced a further inward warping tendency at convex angles. Rigidity improvement achieved by increasing the thickness overcame this resin gradient effect. The precision at convex angles was, thus, improved. However, the precision at concave angles worsened with increasing part thickness. The tool material was found to significantly affect the part precision at both concave and convex angles. Angled parts fabricated in molds made of advanced composite tools yielded much better angle precision than that fabricated in mold made of aluminum tools. As far as the stacking orientation was concerned, the best precision at a 135° convex angle was achieved with a stacking orientation of [0/90/0/90/0/90/90/0], whereas at a 90° concave angle the best precision was achieved with [90/0]4Tfor a laminate of 8 plies. A stacking sequence with a [0/90] orientation was found to cause upward warping. This could be used to counterbalance other inherent warping tendencies.  相似文献   

10.
硅橡胶热膨胀工艺预浸料铺层内树脂压力变化规律   总被引:5,自引:1,他引:4  
采用硅橡胶热膨胀工艺制备了碳纤维/双马树脂复合材料层板, 通过自行设计的成型模具及树脂压力在线测试系统测试并分析了成型过程中热胀压力和预浸料铺层内树脂压力的变化规律, 考察了工艺间隙和温度分布的影响, 并通过显微观察分析了不同工艺条件下层板的密实状况。结果表明: 采用树脂压力在线测试系统, 可实现热膨胀工艺预浸料铺层内树脂压力的测试; 工艺间隙和硅橡胶内的温度分布对树脂压力及硅橡胶的热胀压力有重要影响, 在零吸胶工艺条件下, 当工艺间隙设计合理时, 凝胶前热胀压力和树脂压力的变化趋势及变化程度基本一致, 固化层板纤维密实并且厚度均匀; 通过增加恒温平台减小硅橡胶内部温差, 可使热胀压力的增加速度减小。   相似文献   

11.
During the imprinting process, the temperature of the UV resin increases as the phase of the resin changes from fluid into solid. During UV curing, some amount of heat is released from inside the resin and transferred into contacting materials. The heat flow is measured with photo-DSC, and other related thermal and mechanical properties of the resin. With the measured material properties, the temperature developments both inside of the resin layer and along the interfaces of the contacting materials are computed. During the UV exposure period, the thermal deformation of the mold, which directly influences the pattern distortion are investigated. Under this condition, the developments of strain and temperature inside the mold structure including the UV resin of 3-D shape are computed with the transient time scale during UV curing according to the thickness of resin layer. These computational results are expected to provide useful information for better designs of the imprinting mold and the process condition.  相似文献   

12.
The thermoset tape pultrusion is a widely adopted manufacturing process to produce long, constant cross-section composite structural parts. For high volume production, low cost can be achieved by maximizing the production rate which is a function of the material and process parameters, more specifically the rate of resin infiltration and resin cure. During resin infiltration, the resin saturates the dry reinforcement either under positive pressure in the pressure chamber, or, by the action of capillary and surface forces, within the resin bath. In either case, the saturation must be completed as the tape is squeezed into the final cross-sectional form at the entrance of the heated mold where the resin will be cured to form the composite part.This paper models the resin infiltration process during pultrusion, by modifying the pre-existing simulation tool for liquid molding processes. The formulated capability can be used not only to optimize the impregnation dynamics within the pressure chamber, but can also be used to predict the required forces for the selected pulling rate. The proposed model does allow one to handle a variety of tape cross-sections, not just rectangular prisms.  相似文献   

13.
Compression resin transfer molding (CRTM) is an alternative solution to conventional resin transfer molding processes. It offers the capability to produce net shape composites with fast cycle times making it conducive for high volume production. The resin flow during this process can be separated into three phases: (i) metered amount of resin injection into a partially closed mold containing dry fiber preform, (ii) closure of the mold until it is in contact with the fiber preform displacing all the resin into the preform and (iii) further mold closure to the desired thickness of the part compacting the preform and redistributing the resin. Understanding the flow behavior in every phase is imperative for predictive process modeling that guarantees full preform saturation within a given time and under specified force constraints.  相似文献   

14.
《Composites Part A》2007,38(5):1363-1386
In this study, a thermocouple sensor system was used to monitor the resin transfer molding (RTM) process. These sensors are low-cost and durable; and they do not disturb the resin flow. They can be used if the inlet resin is either hotter or colder than the mold walls. In experiments of this study, much of the hot resin’s internal energy was transferred to cold mold walls by conduction, when the mold parts were made of a material with high thermal conductivity, such as aluminum. A mathematical model based on 1D flow and 2D unsteady energy conservation was developed to investigate the heat transfer between resin and mold walls. The numerical solution of this model is in qualitative agreement with the results of our experiments. The thermocouple sensor system developed is more useful with the following process parameters: low thermal conductivity of mold material, high resin flow rate, high temperature difference between inlet resin and initial mold walls, and high specific heat of resin. However, for the typical use of RTM materials and typical injection parameters, thermocouples should not be preferred over other sensor types and should be used with caution due to the shortcomings investigated in this study.  相似文献   

15.
An investigation into the thermoelastic spring-in of curved sandwich panels has been conducted. Sandwich panels incorporating solid foam cores and biaxial glass–epoxy skins were manufactured and spring-in measured. The major contributors to spring-in were found to be the thermal expansion and Poisson’s ratio of the foam which were subsequently characterised. Also important was the development of resin rich regions on the surface of the panel. Experimental findings were implemented into a finite element (FE) model developed using 3-dimensional elements in ANSYS. The investigation was extended to panels including a core with machined slots. A refined FE model highlighted the influence of in-plane restraint reduction within the core, as well as the effect of a much thicker resin rich region caused by core segmentation. Results showed good agreement with experiment and provided a good basis for shape prediction of sandwich panels.  相似文献   

16.
A thermal, rheological and mechanical material characterization of an aeronautic epoxy resin from commercial prepreg is reported in this article. The kinetic of the crosslinking reaction of the resin is characterized and modeled. The specific heat, the glass transition temperature, the thermal expansion coefficients, the chemical shrinkage coefficients and the thermo-mechanical properties have been investigated as a function of temperature and degree of cure. Dynamic mechanical measurements are used to determine the gel point. Finally, the residual stresses developed during the curing process are calculated using a finite element simulation, taking into account the material properties evolutions according to proposed models. The results highlight the importance of the characterization accuracy and the associated models.  相似文献   

17.
Control and optimization of curing process is very important for the production of high quality composite parts. Crosslinking of molecules of thermoset resin occurs in this phase, which involves exothermy of reaction, chemical shrinkage (Sh) and development of thermo-physical and thermo-mechanical properties. Exact knowledge of the evolution of all these parameters is required for the better understanding and improvement of the fabrication process. Sh is one such property of thermoset matrix, which is difficult to characterize due to its coupling with thermal expansion/contraction. A number of techniques have been used to determine volume Sh of thermoset matrix, which later on has been used to find tensor of Sh for the simulation of residual stresses and shape distortion of composite part, etc. Direct characterization of volume Sh of composites has also been made by some authors. Though not much, but some work has also been reported to determine the Sh of composite part in a specific direction. In this article, all the techniques used in the literature for the characterization of Sh of resin and composite are reported briefly with their respective advantages, disadvantage and important results.  相似文献   

18.
PP/GMT制品模内冷却与结晶过程模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用有限元方法,对PP/GMT制品压缩模塑的冷却与结晶过程进行数值模拟,采用非等温结晶模型,计算出不同条件下制品中树脂的结晶度和制品内部温度分布,并与实验结果进行了对比,为压缩模塑中保压冷却时间的确定提供了理论依据。  相似文献   

19.
The drive towards rapid cure thermosetting composites requires a better understanding of the residual stresses that develop during curing. This study investigates the impact of residual stresses on the interlaminar shear strength of resin-infused epoxy/anhydride carbon-fibre laminates. The magnitude of the residual stress was varied by changing the initial injection cure temperature between 75 °C and 145 °C. The corresponding cycle times and the final glass transition temperature of the resin were also measured. The experimentally measured chemical shrinkage and thermal expansion properties of the resin after vitrification were used as inputs to a finite element analysis to calculate the peak residual stresses in the composite. An increase in the initial cure temperature from 85 to 135 °C resulted in an increase of 25% in the residual stress, which led to an experimentally measured reduction in the composite’s short beam shear strength of approximately 16% (8 MPa), in good agreement with model prediction.  相似文献   

20.
热膨胀工艺硅橡胶芯模对复合材料圆管成型的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在建立硅橡胶芯模尺寸及工艺间隙设计公式的基础上,采用硅橡胶热膨胀工艺制备了碳纤维/双马树脂复合材料圆管,考察了不同厚度硅橡胶芯模对成型过程温度分布及预浸料铺层内部树脂压力的影响,并分析了圆管的成型质量。结果表明:硅橡胶芯模的厚度对温度分布影响较大,厚度为5mm时,温度分布比较均匀;铺层内的树脂压力能够达到设计压力,但不...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号