首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we present a low-power fully integrated 10-Gb/s transceiver in 0.13-/spl mu/m CMOS. This transceiver comprises full transmit and receive functions, including 1:16 multiplex and demultiplex functions, high-sensitivity limiting amplifier, on-chip 10-GHz clock synthesizer, clock-data recovery, 10-GHz data and clock drivers, and an SFI-4 compliant 16-bit LVDS interface. The transceiver exceeds all SONET/SDH (OC-192/STM-64) jitter requirements with significant margin: receiver high-frequency jitter tolerance exceeds 0.3 UI/sub pp/ and transmitter jitter generation is 30 mUI/sub pp/. All functionality and specifications (core and I/O) are achieved with power dissipation of less than 1 W.  相似文献   

2.
A source-synchronous I/O link with adaptive receiver-side equalization has been implemented in 0.13-/spl mu/m bulk CMOS technology. The transceiver is optimized for small area (360 /spl mu/m /spl times/ 360 /spl mu/m) and low power (280 mW). The analog equalizer is implemented as an 8-way interleaved, 4-tap discrete-time linear filter. The equalization improved the data rate of a 102 cm backplane interconnect by 110%. On-die adaptive logic determines optimal receiver settings through comparator offset cancellation, data alignment of the transmitter and receiver, clock de-skew and setting filter coefficients for equalization. The noise-margin degradation due to statistical variation in converged coefficient values was less than 3%.  相似文献   

3.
This work presents a quad-channel serial-link transceiver providing a maximum full duplex raw data rate of 12.5Gb/s for a single 10-Gbit eXtended Attachment Unit Interface (XAUI) in a standard 0.18-/spl mu/m CMOS technology. To achieve low bit-error rate (BER) and high-speed operation, a mixed-mode least-mean-square (LMS) adaptive equalizer and a low-jitter delay-immune clock data recovery (CDR) circuit are used. The transceiver achieves BER lower than <4.5/spl times/10/sup -15/ while its transmitted data and recovered clock have a low jitter of 46 and 64 ps in peak-to-peak, respectively. The chip consumes 178 mW per each channel at 3.125-Gb/s/ch full duplex (TX/RX simultaneous) data rate from 1.8-V power supply.  相似文献   

4.
This paper describes the design and implementation of a quad high-speed transceiver cell fabricated in 0.13-/spl mu/m CMOS technology. The clocking circuit of the cell employs a dual-loop architecture with a high-bandwidth core phase-locked loop (PLL) and low-bandwidth digitally controlled interpolators. To achieve low jitter while maintaining low power consumption, the dual-loop PLL uses two on-chip linear regulators of different bandwidths, one for the core and the other for the interpolator loop. The prototype chip operates from 400 Mb/s to 4 Gb/s with a bit error rate of <10/sup -14/. The quad cell consumes 390 mW at 2.5 Gb/s (95 mW/link) under typical operating conditions with a 400-mV output swing driving double terminated links.  相似文献   

5.
A quad-channel 0.6-3.2 Gb/s/channnel transceiver using eight independent phase-locked loops (PLLs) shows a 1-ps rms random jitter performance without interchannel interference. The PLL employs a folded starved inverter with high supply/substrate noise immunity and an analog coarse-tuning scheme for both seamless frequency acquisition and N-fold voltage-controlled-oscillator (VCO) gain reduction. A fixed-interval charge pumping is adopted for wide pumping-current range and large jitter tolerance. A wide-range delayed-locked loop (DLL) is utilized as a clock and reset generator for an elastic buffer. The transceiver, implemented in a 0.18-/spl mu/m CMOS technology, operates across a 30-in FR-4 backplane up to 3.2 Gb/s/ch with a bit-error rate of less than 10/sup -13/.  相似文献   

6.
This paper describes a technique for stabilizing the binary phase detector (PD) gain under various jitter conditions. A dead zone in the phase detector estimates the magnitude of high-frequency data jitter, and the resulting jitter information is used to control the charge-pump current. An alternating edge-sampling (AES) PD reduces hardware overhead by removing possible redundancies in previous dead-zone implementations. A series sense amplifier driven by a single-phase clock helps high-speed data sampling with increased data evaluation time. A dual path voltage-controlled oscillator incorporating dual-loop architecture enables wide-range operation of clock/data recovery circuits with low jitter. Fabricated in a 0.18-/spl mu/m CMOS process, a test transceiver operates from 2.5 to 11.5 Gb/s with a bit-error rate of less than 10/sup -12/ while consuming 540 mW from a 1.8-V supply.  相似文献   

7.
This paper presents a baseband processor architecture for pulsed ultra-wideband signals. It consists of an analog-to-digital converter (ADC), a clock generation system, and a digital back-end. The clock generation system provides different phases of a 300-MHz clock using four differential inverter stages. The specification of the jitter standard deviation is 100 ps. The Flash interleaved ADC provides four bit samples at 1.2 Gsps. The back-end uses parallelization to process these samples and to reduce the signal acquisition time to 65 /spl mu/s. The entire synchronization algorithm is implemented in the digital domain, without feeding any signals back to the clock control. The baseband processor and ADC were implemented on the same 0.18-/spl mu/m CMOS die at 1.8 V as part of a complete baseband transceiver. A wireless data rate of 193 kb/s is demonstrated.  相似文献   

8.
A CMOS ultra-wideband impulse radio (UWB-IR) transceiver was developed in 0.18-/spl mu/m CMOS technology. It can be used for 1-Mb/s data communications as well as for precise range finding within an error of /spl plusmn/2.5 cm. The power consumptions of the transmitter and receiver for data communication are 0.7 and 4.0 mW, respectively. When an LNA operates intermittently through bias switching, the power consumption of the transceiver is only 1 mW. The range for data communication is 1 m with BER of 10/sup -3/. For ranging applications, the transmitter can reduce the power to 0.7 /spl mu/W for 1k pulses per second, and the receiver consumes little power. The transceiver design, all-digital transmitter, and intermittent circuit operation at the receiver reduce the power consumption dramatically, which makes the transceiver well suited for applications like sensor networks. The electronic field intensity is lower than 35 /spl mu/V/m, and thus the UWB system can be operated even under the current Japan radio regulations.  相似文献   

9.
We describe a CMOS multichannel transceiver that transmits and receives 10 Gb/s per channel over balanced copper media. The transceiver consists of two identical 10-Gb/s modules. Each module operates off a single 1.2-V supply and has a single 5-GHz phase-locked loop to supply a reference clock to two transmitter (Tx) channels and two receiver (Rx) channels. To track the input-signal phase, the Rx channel has a clock recovery unit (CRU), which uses a phase-interpolator-based timing generator and digital loop filter. The CRU can adjust the recovered clock phase with a resolution of 1.56 ps. Two sets of two-channel transceiver units were fabricated in 0.11-/spl mu/m CMOS on a single test chip. The transceiver unit size was 1.6 mm /spl times/ 2.6 mm. The Rx sensitivity was 120-mVp-p differential with a 70-ps phase margin for a common-mode voltage ranging from 0.6 to 1.0 V. The evaluated jitter tolerance curve met the OC-192 specification.  相似文献   

10.
This paper describes an optical transceiver designed for power-efficient connections within high-speed digital systems, specifically for board- and backplane-level interconnections. A 2-Gb/s, four-channel, dc-coupled differential optical transceiver was fabricated in a 0.5-/spl mu/m complementary metal-oxide-semiconductor (CMOS) silicon-on-sapphire (SoS) process and incorporates fast individual-channel power-down and power-on functions. A dynamic sleep transistor technique is used to turn off transceiver circuits and optical devices during power-down. Differential signaling (using two optical channels per signal) enables self-thresholding and allows the transceiver to quickly return from power-down to normal operation. A free-space optical link system was built to evaluate transceiver performance. Experimental results show power-down and power-on transition times to be within a few nanoseconds. Crosstalk measurements show that these transitions do not significantly impact signal integrity of adjacent active channels.  相似文献   

11.
This paper describes a 2.5-3.125-Gb/s quad transceiver with second-order analog delay-locked loop (DLL)-based clock and data recovery (CDR) circuits. A phase-locked loop (PLL) is shared between receive (RX) and transmit (TX) chains. On each RX channel, an amplifier with user-programmable input equalization precedes the CDR. Retimed data then goes to an 1:8/1:10 deserializer. On the TX side, parallel data is serialized into a high-speed bitstream with an 8:1/10:1 multiplexer. The serial data is introduced off-chip through a high-speed CML buffer having single-tap pre-emphasis. Proposed DLL-based CDR can tolerate large frequency offsets with no jitter tolerance degradation due to its second-order PLL-like nature. Also, this study introduces an improved charge-pump and an improved phase-interpolator. Fabricated in a 0.15-/spl mu/m CMOS process, the 1.9-mm/sup 2/ transceiver front-end operates from a single 1.2-V supply and consumes 65-mW/channel of which 32 mW is due to the CDR. CDR jitter generation and high-frequency jitter tolerance are 5.9 ps-rms and 0.5 UI, respectively, for 3.125 Gb/s, 2/sup 23/-1 PRBS input data with 800-ppm frequency offset.  相似文献   

12.
This paper describes a low-power synchronous pulsed signaling scheme on a fully AC coupled multidrop bus for board-level chip-to-chip communications. The proposed differential pulsed signaling transceiver achieves a data rate of 1 Gb/s/pair over a 10-cm FR4 printed circuit board, which dissipates only 2.9 mW (2.9 pJ/bit) for the driver and channel termination and 2.7 mW for the receiver pre-amplifier at 500 MHz. The fully AC coupled multipoint bus topology with high signal integrity is proposed that minimizes the effect of inter-symbol interference (ISI) and achieves a 3 dB corner frequency of 3.2 GHz for an 8-drop PCB trace. The prototype transceiver chip is implemented in a 0.10-/spl mu/m 1.8-V CMOS DRAM technology and packaged in a WBGA. It occupies an active area of 330/spl times/85 /spl mu/m/sup 2/.  相似文献   

13.
This work presents a low-jitter pulsewidth control loop (PWCL) circuit. A mutual-correlated scheme is implemented to adjust the duty cycle and increase the stability of the PWCL. The design is less sensitive to process variation. The jitter induced by voltage ripple is suppressed. The circuit is implemented using 0.35 /spl mu/m 1P4M CMOS process. The area of the PWCL is 136 /spl times/ 143 /spl mu/m/sup 2/. At an operating frequency of 300 MHz, the power dissipation and voltage ripple are reduced by 35.4% and 93.7%, respectively. A test chip is successfully verified to obtain 42-ps jitter at an operating frequency of 900 MHz.  相似文献   

14.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

15.
Link processing with individual laser pulses has become an industry standard process in IC memory chip manufacturing. It is gaining wide acceptance in analog chip reprogramming and tuning as well. Traditional laser processing, using the standard output of Nd:YAG at 1.064-/spl mu/m and Nd:YLF at 1.047-/spl mu/m laser wavelengths, works well for polysilicon links but is not satisfactory for metal links. This paper describes the physics modeling and computer simulation of the laser link process and a new technique of using 1.3-/spl mu/m laser wavelength for the process. While light absorption of link materials at 1.064-, 1.047-, and 1.3-/spl mu/m wavelengths are relatively the same, the absorption of a Si substrate at 1.3 /spl mu/m is considerably less. The improved absorption contrast between the link material and silicon substrate at 1.3-/spl mu/m delivers a much wider laser process window. Both simulation and experimental results are given and discussed. A brief introduction of another new technique, which uses UV laser pulses for link processing, is given. This UV laser process delivers a laser beam spot size much smaller than 1.5 /spl mu/m.  相似文献   

16.
A walk-off balanced nonlinear fiber loop mirror switch   总被引:1,自引:0,他引:1  
We have successfully demonstrated a walk-off balanced nonlinear fiber loop mirror (WBNFLM)-type all-optical switch for 10 Gb/s signal of 1.3-/spl mu/m wavelength with 1.5-/spl mu/m control pulses. This switching scheme, as compared with the conventional types of NFLM, allows the switching speed to go above the limitation imposed by walk-off effects and jitter tolerance to be maximum without degradation of on-off ratio.  相似文献   

17.
Advances in screen printing and photoimageable paste technologies have allowed low-temperature cofired ceramic (LTCC) circuit densities to continue to increase; however, the size of vias for Z-axis interconnections in multilayer LTCC substrates have been a limiting process constraint. In order to effectively exploit the 50-100-/spl mu/m line/spacing capabilities of advanced screen printing and photoimageable techniques, microvia technologies need to achieve 100 /spl mu/m and under in diameter. Three main steps in fabrication of microvias include via formation, via metallization or via fill, and layer-to-layer alignment. The challenges associated with the processing and equipment for the fabrication of microvias are addressed in this paper. Microvias down to 50 /spl mu/m in diameter with spacings as small as 50 /spl mu/m are achieved in 50-254-/spl mu/m-thick LTCC tape layers through the use of a mechanical punching system, whereas the minimum size of 75-/spl mu/m via/spacing is obtained using a pulse laser-drilling system in the LTCC tape layers with the same thicknesses as those for the punching test. The quality of punched microvias and laser-drilled microvias will be presented as well. Layer-to-layer alignment is crucial to the connection of vias in adjacent LTCC tape layers. Through a stack and tack machine with a three-camera vision system and an adjustable precision stage, less than 25-/spl mu/m layer-to-layer misalignment is achieved across a 114.3/spl times/114.3 mm (4.5/spl times/4.5 in) design area. In a six-layer LTCC test substrate (152/spl times/152/spl times/0.762 mm), microvias of 50, 75, and 100 /spl mu/m in diameter are successfully fabricated without the use of via catch pads. The cross section of fired microvias filled with silver conductor pastes at various locations of this substrate demonstrates a minor layer-to-layer misalignment in both X and Y directions across the substrate.  相似文献   

18.
This paper presents a technique for characterizing the statistical properties and spectrum of power supply noise using only two on-chip low-throughput samplers. The samplers utilize a voltage-controlled oscillator to perform high-resolution analog-to-digital conversion with minimal hardware. The measurement system is implemented in a 0.13-/spl mu/m process along with a high-speed link transceiver. Measured results from this chip validate the accuracy of the measurement system and elucidate several aspects of power supply noise, including its cyclostationary nature.  相似文献   

19.
This paper investigates the impact of clock jitter induced by substrate noise on the performance of the oversampling /spl Delta//spl Sigma/ modulators. First, a new stochastic model for substrate noise is proposed. This model is then utilized to study the clock jitter in clock generators incorporating phase-locked loops (PLLs). Next, the effect of the clock jitter on the performance of the /spl Delta//spl Sigma/ modulator is studied. It will be shown that substrate noise degrades the signal-to-noise ratio of the /spl Delta//spl Sigma/ modulator while the noise shaping does not have any effect on clock jitter induced by substrate noise. To verify the analysis experimentally, a circuit consisting of a second-order /spl Delta//spl Sigma/ modulator, a charge-pump PLL, and forty multistage digital tapered inverters driving 1-pF capacitors is designed in a 0.25-/spl mu/m standard CMOS process. Several experiments on the designed circuit demonstrate the high accuracy of the proposed analytical models.  相似文献   

20.
A novel multifunctional transceiver for chip-to-chip optical interconnects operating at 2.5 Gbit/s is proposed, which shares a common block between a receiver and a transmitter. This transceiver provides four conversion functions - electrical-to-optical, optical-to-optical, optical-to-electrical, and electrical-to-electrical - depending on the selection switch on a single chip. The whole chip integrated in 0.18 /spl mu/m CMOS occupies an area measuring 0.82/spl times/0.82 mm/sup 2/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号