共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
在加工过程中,机床会因热变形而产生误差,这将严重影响加工精度。减少加工过程的热误差是提高加工精度的有效途径,而确定关键温度测点不仅能提高计算效率,还可避免温度数据间复共线性问题,提高热误差模型的预测精度。提出基于改进模糊聚类和最大信息系数(MIC)的温度测点选择方法,通过改进模糊聚类对温度测点进行分类;根据MIC方法选择每类温度数据中的关键温度测点;使用BP神经网络对热误差进行建模。结果表明:与传统温度测点选择方法相比,利用所提方法改进的热误差模型精度更高。 相似文献
3.
4.
在数控机床热误差补偿技术中,温度测点的选择与优化是一个难点。文章采用逐步线性回归方法对核电轮槽铣床主轴箱的温度测点进行优化与建模。首先利用瞬态热-结构耦合分析了主轴箱在粗加工时的温升和热变形,再通过逐步线性回归方法对温度测点进行优化,利用优化后的温度测点建立了主轴X,Y,Z三个方向的热误差模型,最后对主轴箱在精加工运行时对所建立的模型进行了验证,结果表明:该方法不仅可以有效减小温度测点数目,还能保证模型的预测精度,三个方向的热误差均减小到5μm以下。 相似文献
5.
为了降低铣床主轴旋转受温度影响而产生的位移变形量,提高铣床对零件的加工精度,采用了模糊C均值聚类法和多元线性回归理论对铣床主轴的热误差进行建模,实现铣床主轴加工误差值最小化;分析了模糊C均值聚类法筛选最优值的迭代过程,对铣床上不同位置的测量温度值进行分组,筛选出每组的最优温度值;采用多元线性回归理论,对铣床热误差理论预测模型进行了推导,通过实验验证多元线性回归理论所创建的热误差预测模型。实验结果表明:补偿前,铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为45.0μm和28.0μm;补偿后铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为3.2μm和3.8μm,误差范围都在4μm以内。采用模糊C均值聚类法和多元线性回归理论对铣床热误差进行补偿,铣床主轴运转受温度影响所产生的误差明显降低,从而提高了主轴定位精度。 相似文献
6.
7.
8.
9.
10.
热关健点的选择和热误差建模技术是决定热误差补偿是否有效的关键,对提高数控机床的加工精度至关重要.为了实现对数控机床热误差的补偿控制,文章利用模糊C均值(FCM)聚类方法,对机床上布置的温度测点进行优化筛选,将温度变量从20个减少到4个,然后给出了基于RBF热误差补偿建模方法.通过建模实例表明,文章提出的建模方法,在保证补偿模型精度的同时有效减少了温度测点,降低了变量耦合影响,并提高了补偿模型的鲁棒性. 相似文献
11.
12.
基于岭回归的数控机床温度布点优化及其热误差建模 总被引:1,自引:0,他引:1
提出一种基于岭回归分析的数控机床温度布点优化方法.数控机床热误差建模一般采用多元线性回归方法,在多元线性回归模型中,隐含着要求解释变量之间无强相关性的假定.然而在实际的建模中,各自变量与因变量之间的相互关系并不与简单相关系数所反映的情况完全吻合.通过岭迹对温度变量进行优化选择,实现了温度测点优化布置,并选用适当的岭参数k建立了数控机床热误差的多元线性回归优化模型,提高了热误差模型的精确性和鲁棒性. 相似文献
13.
为建立更加准确的电主轴热误差预测模型,以某台电主轴为实验对象,测得10 000 r/min转速时的温升和热伸长数据。利用模糊聚类结合灰色关联度分析(FCM-GRA)理论,优化温度测点。采用鲸鱼优化算法(WOA)和支持向量回归(SVR)相结合的方法,建立电主轴的热误差预测模型。对比多元线性回归、SVR和WOA-SVR预测模型预测效果。结果表明:鲸鱼算法优化后的支持向量回归预测模型可以更有效预测电主轴的热误差,将拟合误差最大值降低到3.72μm,均方根误差降低至1.33μm,验证了所提方法的可行性。 相似文献
14.
15.
16.
制造云服务语义自动标注技术是基于语义的制造云服务组合中涉及的关键技术之一。采用Web服务语义自动标注作为制造云服务语义描述的实现技术,针对制造云服务语义自动标注的本体域定位问题,提出了基于模糊聚类思想的制造云服务本体域定位算法FCDST-DOD,有效地解决了制造云服务本体域定位问题,实现制造云服务的语义自动描述,提高了Web服务语义自动标注的效率和质量。 相似文献