首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

针对一类非线性系统的稳定控制器设计问题, 根据广义模糊双曲正切模型的万能逼近性质, 提出一种带有可调参数的广义模糊双曲正切模型的自适应控制器设计方法. 该设计方法的优点是使得自适应律的个数不依赖于广义模糊双曲正切模型的线性基函数的输出形式, 可以有效减少在线估计的参数数目, 并且能够保证被控系统的状态一致终极有界. 最后通过数值算例表明了所提出的设计方法的有效性.

  相似文献   

2.

Topology optimization of mechanical structures often leads to efficient designs which resemble statically determinate structures. These economical structures are especially vulnerable to local loss of stiffness due to material failure. This paper therefore addresses local failure of continuum structures in topology optimization in order to design fail-safe structures which remain operable in a damaged state.

A simplified model for local failure in continuum structures is adopted in the robust approach. The complex phenomenon of local failure is modeled by removal of material stiffness in patches with a fixed shape. The damage scenarios are taken into account by means of a minimax formulation of the optimization problem which minimizes the worst case performance.

The detrimental influence of local failure on the nominal design is demonstrated in two representative examples: a cantilever beam optimized for minimum compliance and a compliant mechanism. The robust approach is applied successfully in the design of fail-safe alternatives for the structures in these examples.

  相似文献   

3.

Fuel cells, batteries, and thermochemical and other energy conversion devices involve the transport of a number of (electro-) chemical species through distinct materials so that they can meet and react at specified multi-material interfaces. Therefore, morphology or arrangement of these different materials can be critical in the performance of an energy conversion device. In this paper, we study a model problem motivated by a solar-driven thermochemical conversion device that splits water into hydrogen and oxygen. We formulate the problem as a system of coupled multi-material reaction-diffusion equations where each species diffuses selectively through a given material and where the reaction occurs at multi-material interfaces. We introduce a phase-field formulation of the optimal design problem and numerically study selected examples.

  相似文献   

4.
Kirsch  U.  Taye  S. 《Engineering with Computers》1986,1(4):229-243

Two problems of optimum topological design of grillages are discussed: (1) the Equilibrium Linear Programming (ELP), where the analysis model is based only on equilibrium conditions and (2) the Nonlinear Program (NLP), where the ELP formulation is extended to include compatibility conditions. The structural topology is optimized by allowing elimination of elements. Three different force method formulations are presented for each of the problems. It is shown that the optimal topology for the NLP problem might correspond to a singular point in the design space. The optimal topology for the ELP problem is obtained by solving a linear program (LP).

Conditions for selecting a geometry of Multiple Optimal Topologies (MOT) are derived. The objective function for the MOT geometry is shown to be independent of the redundant forces, and some of the optimal topologies are usually statically determinate structures. In such cases the lower bound on the optimal value obtained by the ELP solution is equal to the final global optimum. Examples are given to illustrate how the optimal topology and its corresponding load path change with the geometric parameters. Design procedures that combine automated optimization and CAD techniques are most suitable for solving the presented problems.

  相似文献   

5.
We describe a new technology (patent pending) for high-throughput selection of poly(A)+ RNA from total RNA. A novel binding solution is used to ensure the efficient and specific binding of mRNA to oligo(dT) magnetic beads with high stringency, virtually eliminating the non-specific binding of ribosomal RNA (rRNA) either to oligo(dT) beads or to the poly(A)+ RNA bound to the beads. As quantified by real-time RT-PCR, more than 99% of the rRNA is removed in a single round selection and mRNAs are fully recovered for both highly-expressed (GAPDH) and poorly-expressed (DDPK) genes from a few μg total RNA. The protocol is adaptable to any generic robotic workstation and takes ˜30 minutes to process 96 samples.  相似文献   

6.

Traditional portfolio selection (PS) models are based on the restrictive assumption that the investors have precise information necessary for decision-making. However, the information available in the financial markets is often uncertain. This uncertainty is primarily the result of unquantifiable, incomplete, imprecise, or vague information. The uncertainty associated with the returns in PS problems can be addressed using random-rough (Ra-Ro) variables. We propose a new PS model where the returns are stochastic variables with rough information. More precisely, we formulate a Ra-Ro mathematical programming model where the returns are represented by Ra-Ro variables and the expected future total return maximized against a given fractile probability level. The resulting change-constrained (CC) formulation of the PS optimization problem is a non-linear programming problem. The proposed solution method transforms the CC model in an equivalent deterministic quadratic programming problem using interval parameters based on optimistic and pessimistic trust levels. As an application of the proposed method and to show its flexibility, we consider a probability maximizing version of the PS problem where the goal is to maximize the probability that the total return is higher than a given reference value. Finally, a numerical example is provided to further elucidate how the solution method works.

  相似文献   

7.

Material design is a critical development area for industries dealing with lightweight construction. Trying to respond to these industrial needs topology optimization has been extended from structural optimization to the design of material microstructures to improve overall structural performance. Traditional formulations based on compliance and volume control result in stiffness-oriented optimal designs. However, strength-oriented designs are crucial in engineering practice. Topology optimization with stress control has been applied mainly to (macro) structures, but here it is applied to material microstructure design. Here, in the context of density-based topology optimization, well-established techniques and analyses are used to address known difficulties of stress control in optimization problems. A convergence analysis is performed and a density filtering technique is used to minimize the risk of results inaccuracy due to coarser finite element meshes associated with highly non-linear stress behavior. A stress-constraint relaxation technique (qp-approach) is applied to overcome the singularity phenomenon. Parallel computing is used to minimize the impact of the local nature of the stress constraints and the finite difference design sensitivities on the overall computational cost of the problem. Finally, several examples test the developed model showing its inherent difficulties.

  相似文献   

8.
李炜  王艳飞 《控制与决策》2011,26(12):1768-1776
研究一类含有时变时延和丢包的网络化控制系统的鲁棒H∞保性能容错控制问题.基于一种状态多时延模型,推导出确保闭环系统在执行器或传感器发生失效故障时具有鲁棒H∞保性能的时滞依赖充分条件,并针对求解具有LMIs约束的凸优化问题,给出了最优鲁棒如保性能容错控制器的设计方法.由于新模型中考虑了时延下界,且证明过程引入了适当自由权矩阵变量,所得结果具有较少保守性.仿真实例验证了所提出方法的有效性.  相似文献   

9.

研究以低碳为目标的集装箱拖车运输问题. 该问题需同时调度隐含的运输资源和具有双重时间窗限制的运输任务. 基于扩展的确定的活动在顶点上(DAOV) 的图建立该问题的具有双时间窗约束的混合整数非线性规划模型,设计一个基于时间窗离散化的求解算法, 并将该模型转化为纯整数线性规划模型. 实验结果表明, 所提出的方法有很好的求解速度和精度, 与给定车辆行驶速度情形的对比进一步验证了所提出模型的有效性.

  相似文献   

10.
A Functional Abstract Notation (FAN) is proposed for the specification and design of parallel algorithms by means of skeletons - high-level patterns with parallel semantics. The main weakness of the current programming systems based on skeletons ii that the user is still responsible for finding the most appropriate skeleton composition for a given application and a given parallel architecture

We describe a transformational framework for the development of skeletal programs which is aimed at filling this gap. The framework makes use of transformation rules which are semantic equivalences among skeleton compositions. For a given problem, an initial, possibly inefficient skeleton specification is refined by applying a sequence of transformations. Transformations are guided by a set of performance prediction models which forecast the behavior of each skeleton and the performance benefits of different rules. The design process is supported by a graphical tool which locates applicable transformations and provides performance estimates, thereby helping the programmer in navigating through the program refinement space. We give an overview of the FAN framework and exemplify its use with performance-directed program derivations for simple case studies. Our experience can be viewed as a first feasibility study of methods and tools for transformational, performance-directed parallel programming using skeletons.  相似文献   

11.
Origami has the potential to impact numerous areas of design and manufacturing. Modeling and analysis of origami structures allow for the understanding of their behavior and the development of computational tools for their design. Most available origami models are limited to the idealization of folds as creases of zeroth-order geometric continuity, which is not proper for origami structures having non-negligible fold thickness or with maximum curvature at the folds restricted by material limitations. Structural analysis of origami sheets having creased folds requires further idealizations of the fold mechanical response such as the representation of the folds as torsional springs. In view of this, a novel model analogous to that for rigid origami is presented in this work for origami structures having folds of non-zero surface area that exhibit higher-order geometric continuity (termed smooth folds). This origami model allows for a proper structural analysis of origami sheets using plate or shell representations for the folds. The shape formulation of the smooth folds and the kinematic constraints on their associated shape variables are presented. Modeling of origami structures with smooth folds exhibiting elastic behavior is performed by determining the configuration of the structure that minimizes its total potential energy subject to the derived kinematic constraints. The presented results show that the structural response determined using the proposed model is in good agreement with both experiments and higher-fidelity finite element analyses.  相似文献   

12.

In this paper, a hybrid system for wind power ramp events (WPREs) detection is proposed. The system is based on modeling the detection problem as a binary classification problem from atmospheric reanalysis data inputs. Specifically, a hybrid neuro-evolutionary algorithm is proposed, which combines artificial neural networks such as extreme learning machine (ELM), with evolutionary algorithms to optimize the trained models and carry out a feature selection on the input variables. The phenomenon under study occurs with a low probability, and for this reason the classification problem is quite unbalanced. Therefore, is necessary to resort to techniques focused on providing a balance in the classes, such as the synthetic minority over-sampling technique approach, the model applied in this work. The final model obtained is evaluated by a test set using both ELM and support vector machine algorithms, and its accuracy performance is analyzed. The proposed approach has been tested in a real problem of WPREs detection in three wind farms located in different areas of Spain, in order to see the spatial generalization of the method.

  相似文献   

13.
Zhang  Xin  Zhang  Xiu  Wu  Zhou 《Neural computing & applications》2018,30(9):2895-2905

Sorptive barrier technology is a recently developed tool to separate hazardous contaminants from friendly environment. The design of sorptive barrier refers to configuring different amendments with sorptive ability of organic pollutant, which is an integer programming problem and a relatively time consuming problem as well. In this paper, sorptive barrier design is newly modeled in a biobjective optimization approach, in which the dual problem of sorptive barrier design is deduced. The objectives are to minimize the financial cost and the amount of pollutant leaking through barriers. Then an opposition-based adaptive multiobjective differential evolution algorithm (MODEA-OA) is applied to handle the proposed model. The Pareto optimal front obtained by MODEA-OA spreads accurately and evenly in all three instances tested. To select extreme optimal solutions, the original and dual sorptive barrier design problems can be solved simultaneously. This study suggests that modeling barrier design as a multiobjective optimization problem is an effective approach.

  相似文献   

14.

Pipeline infrastructures, carrying either gas or oil, are often affected by internal corrosion, which is a dangerous phenomenon that may cause threats to both the environment (due to potential leakages) and the human beings (due to accidents that may cause explosions in presence of gas leakages). For this reason, predictive mechanisms are needed to detect and address the corrosion phenomenon. Recently, we have seen a first attempt at leveraging Machine Learning (ML) techniques in this field thanks to their high ability in modeling highly complex phenomena. In order to rely on these techniques, we need a set of data, representing factors influencing the corrosion in a given pipeline, together with their related supervised information, measuring the corrosion level along the considered infrastructure profile. Unfortunately, it is not always possible to access supervised information for a given pipeline since measuring the corrosion is a costly and time-consuming operation. In this paper, we will address the problem of devising a ML-based predictive model for internal corrosion under the assumption that supervised information is unavailable for the pipeline of interest, while it is available for some other pipelines that can be leveraged through Transfer Learning (TL) to build the predictive model itself. We will cover all the methodological steps from data set creation to the usage of TL. The whole methodology will be experimentally validated on a set of real-world pipelines.

  相似文献   

15.
We propose a solution of the multiprocessor scheduling problem based on applying a relatively new metaheuristic technique, called Generalized Extremal Optimization (GEO). GEO is inspired by a simple coevolutionary model known as the Bak–Sneppen model. The model describes an ecosystem consisting of N species. Evolution in this model is driven by a process in which the weakest species in the ecosystem, together with its nearest neighbors, is always forced to mutate. This process shows the characteristics of a phenomenon called punctuated equilibrium, which is observed in evolutionary biology. We interpret the multiprocessor scheduling problem in terms of the Bak–Sneppen model and apply the GEO algorithm to solve the problem. We show that the proposed optimization technique is simple and yet outperforms genetic algorithm-based and swarm algorithm-based approaches to the multiprocessor scheduling problem.  相似文献   

16.

In real-time situations such as airports, railway stations, and shopping complexes, etc. people walk in a group, and such a group of walking persons termed as multi-gait (MG). In these situations, occlusion is a serious issue that affects gait recognition performance. This issue of occlusion of body regions affects the extraction of gait features for the correct recognition of an object. The objective of this article is to reconstruct occluded regions at the preprocessing stage, which can be used for human recognition in the MG scenario. The article is divided into two folds. Firstly, we segment five regions of interest such as ankle, knee, wrist, elbow, and shoulder. We propose a particle swarm optimization (PSO) based neural network (NN) called hybrid NN to solve this problem. The performance of the proposed model is validated on our constructed dataset (SMVDU-MG), considering two view directions i.e. lateral (left to right) and oblique (left to right diagonal). Experimental results show that the proposed model gives better performance compared to an artificial neural network and alternating least square (ALS) method based on mean square error (MSE) and mean absolute percentage error (MAPE) as a performance measure function.

  相似文献   

17.
18.
Abstract

This paper presents an enhancement of the CARESS system—A Constraint Approximative Reasoning System Support—introduced in (Popescu and Roventa, 1994). CARESS is an experimental system with primarily two objectives:

(1)knowledge representation and manipulation techniques and to implement them in PROLOG III, and

(2) to develop a knowledge programming environment for building expert systems. We discuss here the use of meta-programming, constraint logic programming and approximate reasoning for the design of expert systems

It has already been proven that meta-programming and logic programming are powerful techniques for expert system design. Fuzzy logic can be used to model one kind of uncertainty. Constraint logic programming is useful for dealing with the constraints given by operations using fuzzy sets.  相似文献   

19.
奇异非线性系统基于等价空间的故障检测   总被引:1,自引:0,他引:1  
陈莉  钟麦英 《控制与决策》2011,26(2):182-186
研究一类用Takagi-Sugeno(T-S)模糊模型描述的离散奇异系统基于等价空间的故障检测问题,引入反映故障先验信息的参考故障模型,提出一个基于Frobenius范数的残差产生器设计性能指标,将故障检测问题归结为求解一个最小化问题,并给出等价矩阵的线性矩阵不等式求法.该算法能保证残差在实现故障检测的同时对干扰具有最大的鲁棒性.最后,算例仿真验证了所提出方法的有效性.  相似文献   

20.
ABSTRACT

This paper investigates the problem of fuzzy filter design for a class of delayed nonlinear system under random sensor faults with an event-triggered (ET) mechanism. (1) To estimate the dynamics of nonlinear plant, a T–S fuzzy model is manipulated. Random variables are disclosed to express the sensor fault. (2) To take some advantages over existing one, a variable ET mechanism is offered in networked systems (NSs). Under the ET mechanism, sensor data are released only when the plant's measurement (sampled) violate specific threshold of the event condition. (3) Another purpose of this article is to design filters involving system state delays. Then, by using a novel fuzzy Lyapunov–Krasovskii function approach with free weighting matrix technique, dissipative filter design of ET delay networked control systems is proposed. We consider both the sensor fault and ET scheme simultaneously. The simulation example is given to demonstrate the effectiveness of design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号