首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A complete range of perovskite solid solutions can be formed in the (1 − x )Ba(Mg1/3Nb2/3)O3- x La(Mg2/3Nb1/3)O3 (BMN-LMN) pseudobinary system. While pure BMN adopts a 1:2 cation ordered structure, 1:1 ordered phases are stabilized for 0.05 ≤ x ≤ 1.0. Dark-field TEM images indicate that the La-doped solid solutions are comprised of large 1:1 ordered domains and no evidence was found for a phase-separated structure. This observation coupled with the systematic variations in the intensities of the supercell reflections supports a charge-balanced "random-site" model for the 1:1 ordering. The substitution of La also induces a transformation from a negative to positive temperature coefficient of capacitance in the region 0.25 ≤ x ≤ 0.5.  相似文献   

2.
Polarization and strain induced by unipolar electric fields (Puni, Suni) as well as those induced by bipolar electric fields (Pbi, Sbi) were measured in 0.9Pb(Mgl/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric ceramics in the temperature range of −50°-90°C to observe the phase transition in this region and calculate the electrostrictive coefficients from the purely electric-field-induced polarization and strain. By considering both the electrostrictive component (Funi, Suni) and the piezoelectric component ( Pr , Sr), it is shown quantitatively how the transition occurs from pure electrostrictive to partially piezoelectric properties across the phase transition range. Puni represents unmixed electric-field-induced polarization.
while Fbi represents the summation of Puni and Pr . Similarly, Suni represents unmixed electric-field-induced strain, while Sbi represents the summation of Suni and Sr . The effective electrostrictive coefficient (Qeff) is calculated even in the ferroelectric region far below the phase transition temperature using Suni and Puni which are purely electric field induced. Qeff significantly increases as the temperature decreases below the phase transition temperature, which was attributed to the decreased rattling space of B-site atoms.  相似文献   

3.
Single-phase perovskites were formed in the (1−x)Ba(Zn1/3Nb2/3)O3-( x )La(Zn2/3Nb1/3)O3 system for compositions with 0.0≤ x ≤0.6. Although the stability of the trigonal "1:2" ordered structure of the Ba(Zn1/3Nb2/3)O3 end member is very limited (0.0≤ x ≤0.05), low levels of lanthanum induce a transformation to a cubic, "1:1" ordered structure that has a broad range of homogeneity (0.05≤ x ≤0.6). Samples with x > 0.6 were comprised of La3NbO7, ZnO, and a perovskite with x = 0.6. The cubic 1:1 phases were fully ordered and no evidence was found for a compositionally segregated microstructure. These observations could not be reconciled in terms of a "space-charge" model; rather, they supported a charge-balanced, "random-site" structure for the 1:1 cation-ordered Ba(β1/21/2")O3 phases.  相似文献   

4.
Ca(Mg1/3Nb2/3)O3 (CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) ceramic disks were stacked with three stacking schemes, designated as CMN/BZN, CMN/BZN/CMN, and BZN/CMN/BZN, to yield layered dielectric resonators, and the microwave dielectric characteristics were evaluated with the TE01δ mode. Both experiments and finite element analysis showed that the microwave dielectric characteristics of the layered resonator were determined not only by the volume fraction of BZN but also by the stacking scheme. For each stacking scheme, a good combination of microwave dielectric characteristics with an effective dielectric constant of 34.33–34.52, a Q × f value of 58 800–62 080 GHz, and a near-zero temperature coefficient of resonant frequency could be achieved by adjusting the volume fraction of BZN. The effects of the stacking scheme on the microwave dielectric characteristics of the temperature-stable layered resonator were discussed by combining finite element analysis and dielectric composite models.  相似文献   

5.
The pyroelectric properties of (1− x )Pb(Mg1/3Nb2/3)O3− x PbTiO3 (PMN− x PT) single crystals with various compositions and orientations have been investigated using a dynamic method. Excellent pyroelectric performances can be achieved in 〈111〉-oriented rhombohedral PMN− x PT (0.24≤ x ≤0.30) crystals, where the measurement direction corresponds to the polar axis of the crystal. At room temperature, the pyroelectric coefficient and the detectivity figure of merit ( F d ) for the 〈111〉-oriented PMN–0.28PT single crystal are 8.55 × 10−4 C·(m2·K)−1 and 9.89 × 10−5 Pa−1/2 (100 Hz), respectively, superior to those of the widely used pyroelectric materials. They are also weak temperature dependent and nearly independent of frequency. These outstanding pyroelectric performances make the single crystals a promising candidate for uncooled infrared detectors and thermal imagers.  相似文献   

6.
Spray pyrolysis was used to synthesize lead magnesium niobate (PMN) by atomizing a mixture of nitrate aqueous solutions into a high-temperature furnace. This approach allows for instant removal of solvents and decomposition of metal–salts, thereby limiting phase segregation on a nanometer scale, and lowering the transformation temperature for pyrochlore-to-perovskite phase transition. As-synthesized particles were nanocrystalline pyrochlores, with an average crystallite size ∼22 nm. More than 96% perovskite phase was obtained when as-sprayed powders were subsequently calcined at 750°C for 4 h. Sintered PMN ceramics exhibited the typical frequency-dependent dielectric properties, with a peak value of dielectric constant of 18 000, and a transition temperature at −9.6°C at 100 Hz. A series of ceramics were prepared with varied grain sizes. Increasing the grain size increased the dielectric constant, probably due to the smaller fraction of the less-polarizable grain-boundary phases.  相似文献   

7.
Lead-based ferroelectric (FE) ceramics exhibit superior electromechanical properties; therefore, there has been an increased focus on developing new lead-based FE materials with high Curie temperature ( T c) and enhanced properties. The aim of this study was to investigate new compositions in the Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 ( PMN–PYbN–PT) system to enhance the electromechanical properties while increasing the T c and lowering the sintering temperature. The 0.575[0.5PMN–0.5PYbN]–0.425PT composition at PMN/PYbN (50/50) mole ratio were prepared by reactive sintering PMNT and PYbNT powder mixtures at 950°–1200°C for 4 h. PMNT and PYbNT powders were calcined via the columbite method. Samples were prepared by cold isostatic pressing at 80 MPa. Dense and fully perovskite 0.575[0.5PMN–0.5PYbN]–0.425PT ceramics were fabricated at 975°C for 4 h, and these samples displayed a remnant polarization ( P r) of 32 μ C/cm2, coercive field ( E c) of 17 kV/cm, and a piezoelectric charge coefficient ( d 33) of 475 pC/N. It is proposed that this ternary system can be tailored for various applications.  相似文献   

8.
Lead zinc niobate–lead magnesium niobate–lead titanate (PZN–PMN–PT) ceramic powders of perovskite structure have been prepared via a mechanochemical processing route. A single-phase perovskite powder of ultrafine particles in the nanometer range was successfully synthesized when a MZN powder (columbite precursor) was mechanically activated for 10 h together with mixed lead and titanium oxides. The following steps are involved when the ternary oxide mixture is subjected to an increasing degree of mechanical activation. First, the starting materials are significantly refined in particle size as a result of the continuous deformation, fragmentation and then partially amorphized at the initial stage of mechanical activation. This is followed by the formation of perovskite nuclei and subsequent growth of these nuclei in the activated oxide matrix with increasing activation time. When calcined at various temperatures in the range of 500–800°C, pyrochlore phase was not detected by XRD phase analysis in the mechanochemically synthesized powder. Only a minor amount (∼2%) of pyrochlore phase was observed when the calcination temperature was raised to 850°C. The PZN–PMN–PT derived from the mechanochemically synthesized powder can be sintered to ∼98% relative density at a sintering temperature of 950°C. The PZN–PMN–PT sintered at 1100°C for 1 h exhibits a dielectric constant of ∼18 600 and a dielectric loss of 0.015 at the Curie temperature of 112°C when measured at a frequency of 0.1 kHz, together with a d 33 value of 323 ×10−12 pC/N.  相似文献   

9.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

10.
Ca(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE01δ mode. With increasing the Ba(Zn1/3Nb2/3)O3 thickness fraction, the resonant frequency ( f 0) decreased, while the effective dielectric constant (ɛ r ,eff) and temperature coefficient of resonant frequency (τ f ) increased. Good microwave dielectric characteristics were attained for the samples with the Ba(Zn1/3Nb2/3)O3 thickness fraction of 0.5: ɛ r ,eff=34.33, Q × f =57 930 GHz and τ f =2.6 ppm/°C. Finite-element method was used to predict the microwave dielectric characteristics of the layered resonators and good agreements were attained between the experimental results and predicted ones. Also, both experiment and finite-element analysis indicated that the effects of the adhesive on f 0, ɛ r ,eff, and τ f were slight, while that on Q × f value was significant.  相似文献   

11.
12.
The crystal structure of lanthanum-modified lead magnesium niobates having composition (Pb1− x La x ) (Mg(1+ x )/3-Nb(2− x )/3)O3 with X = 0 to 1 was investigated by X-ray powder diffraction. It was found that the fundamental reflections from perovskite structure remain in the whole range of composition. The superlattice reflections from the A(B'1/2-B"1/2)O3 ordered structure are also well preserved for La content greater than 50 at.%; however, a series of extra peaks of mixing indices appears, with intensities gradually enhanced with the increase of La content. For the complete substitution of Pb by La, a splitting of some reflections can be observed in the diffraction pattern. The results indicate that the crystal structure evolves continuously with the La content, from disordered cubic perovskite of space group Pm 3 m for X = 0, to ordered cubic perovskite of space group Fm 3 m for X = 0.5, distorted cubic perovskite of space group Pa 3 for 0.5 < X < 0.9, and finally to a rhombohedral perovskite, possibly belonging to the space group R 3 , for X ≥ 0.9. In the evolution of structure, a linear reduction of the lattice constant of the perovskite cell from 4.048 to 3.964 Å was observed.  相似文献   

13.
Solid solutions between the relaxor ferroelectric Pb3MgNb2O9 (PMN) and the ordered antiferroelectric Pb2MgWO6 (PMW) were studied. X-ray diffraction shows that the superstructure reflections characteristic of the doubling of the perovskite subcell evident in pure PMW begin to appear in compositions containing more than 20 mol% PMW. Dielectric measurements, however, show that the diffuse transition behavior characteristic of PMN persists up to compositions Containing 80 mol% PMW. Results are discussed on the basis of present models for ferroelectric relaxor behavior.  相似文献   

14.
The structure stability of perovskite-type compounds has been quantitatively estimated by applying bond valence calculations to Pb(Mg1/3Nb2/3)O3 (PMN) and Pb(Zn1/3Nb2/3)O3 (PZN). The bond valence calculations revealed that the bond strength between oxygen and cations in the pyrochlore-type compounds is greater than that in the perovskite PMN. It is found that the absolute value of the bond valence sum of oxygen, | V O|, for a PZN single crystal is smallest in reported Pb-containing perovskite-type compounds, corresponding to the fact that it is impossible to synthesize PZN by solid-state reaction under atmospheric pressure. The calculated amount of additives required for stabilizing PZN under atmospheric pressure agreed well with the experimental values.  相似文献   

15.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

16.
Dielectric behavior of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3—PbTiO3 solid-solution system was studied from—50° to 200°C in the 100 to 12 × 109 Hz frequency region, and a broad dielectric relaxation was measured for compositions throughout the system. The relative microwave permittivity of the composition 0.9Pb(Mg1/3Nb2/3)O3·0.1 PbTiO3 decreased by 1 order of magnitude from the 1-MHz value of 11800, and similar decreases were observed for other compositions in the system. Dielectric loss (tan δ) values ranged from 0.5 to 1.0 at microwave frequency. The temperature of the broad dielectric constant maximum shifts toward higher values with increased frequency.  相似文献   

17.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   

18.
The domain structure of ferroelectrics changes during poling has a direct influence on the macroscopic properties of the materials. The intensity variation of the different X-ray diffraction (XRD) pattern profiles was used to identify the percentage of 90° domain reorientation in the tetragonal phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) ceramics after poling. The results are consistent with the change of piezoelectric properties. In addition, by using XRD patterns, a spatial distribution of polarization in a well-poled 0.62PMN–0.38PT ceramics has been determined and was found to be best described by the Cauchy function W 00l (φ)=1/(1+0.023φ2).  相似文献   

19.
Pb[Mg1/3Nb2/3]O3 was gradually substituted by Bi[Mg2/3Nb1/3]O3 (BiMN) up to 30 mol%, with an overall modification by a constant fraction of PbTiO3 (10 mol%). Monophasic perovskite powders could be prepared via the B-site precursor route. Ceramic samples of the system showed a typical relaxor behavior of frequency-dependent dielectric dispersion. Values of the maximum dielectric constant decreased substantially with increasing BiMN concentration, whereas corresponding temperatures changed only moderately.  相似文献   

20.
A relaxor ferroelectric material, 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) with a pyrochlore-free phase, was prepared by using one-step calcination in the present study. The 0.9PMN-0.1PT powder with the pure perovskite phase was prepared successfully from a mixture of the PMN precursor and the crystalline PT by heating for 2 h at temperatures greaterthan equal to750°C. The PMN precursor was synthesized by adding an aqueous Mg(NO3)2 solution, rather than MgO, to the alcoholic slurry of PbO and Nb2O5. The 0.9PMN-0.1PT powder sintered to >96% relative density via heat treatment for 2 h at temperatures of 900°-1200°C. The highest room-temperature dielectric constant (epsilonrt) was 24700 at 1 kHz for the samples that were sintered at 1100°C; however, the samples that were sintered at 900°C still had epsilonrt values of 22600 at 1 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号