首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-adaptive learning based particle swarm optimization   总被引:5,自引:0,他引:5  
Particle swarm optimization (PSO) is a population-based stochastic search technique for solving optimization problems over continuous space, which has been proven to be efficient and effective in wide applications in scientific and engineering domains. However, the universality of current PSO variants, i.e., their ability to achieve good performance on a variety of different fitness landscapes, is still unsatisfying. For many practical problems, where the fitness landscapes are usually unknown, employing a trial-and-error scheme to search for the most suitable PSO variant is computationally expensive. Therefore, it is necessary to develop a more adaptive and robust PSO version to provide users a black-box tool for various application problems. In this paper, we propose a self-adaptive learning based PSO (SLPSO) to make up the above demerits. SLPSO simultaneously adopts four PSO based search strategies. A probability model is used to describe the probability of a strategy being used to update a particle. The model is self-adaptively improved according to the strategies’ ability of generating better quality solutions in the past generations. In order to evaluate the performance of SLPSO, we compare it with eight state-of-the-art PSO variants on 26 numerical optimization problems with different characteristics such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise. The experimental results clearly verify the advantages of SLPSO. Moreover, a practical engineering problem, the economic load dispatch problem of power systems (ELD), is used to further evaluate SLPSO. Compared with the previous effective ELD evolutionary algorithms, SLPSO can update the best solution records.  相似文献   

2.
通常的粒子群优化算法采取单一的学习策略,不利于搜索信息的有效保留,因此将改进的差分变异策略引入到粒子的速度更新中以增强算法的群体多样性;综合利用差分变异与扰动策略两种不同的产生新解的方式,提出了一种多策略交叉学习机制算法DPPSO(hybrid particle swarm optimization with differential and per-turbation)。每一个粒子通过引进的差分变异操作和扰动操作分别产生一个中间粒子,再选择较好的粒子作为当前粒子的新位置,从而实现所有粒子动态地选择更好的生成策略来更新自己的位置和速度,因此该交叉策略能够有效提高PSO算法的群体多样性和搜索路径的多样性,粒子可以获取更好的启发式信息,沿着不同的路径被引向更有潜力的搜索区域。实验结果表明了两种策略的有效性和互补性,DPPSO算法比其他三种算法有更好的综合表现,具有有效的全局收敛能力和准确定位能力。  相似文献   

3.
张新明  康强  王霞  程金凤 《计算机应用》2017,37(11):3194-3200
针对社会学习粒子群优化(SLPSO)算法存在的优化效率低、收敛速度慢等问题,提出了一种改进的SLPSO算法,即基于交叉反向学习和同粒社会学习的PSO算法(CPPSO)。首先,将最优解随机纵向交叉与一般反向学习以及随机反向学习构建交叉反向学习;然后,以此交叉反向学习策略更新种群中的最优粒子位置,增强探索能力,并克服SLPSO中最优粒子无更新导致效率低下的缺点;最后,对于非最优粒子,与SLPSO采用基于维的社会学习不同,均采用新型基于粒子的社会学习机制,在提高全局搜索能力同时,更提高开采能力和搜索效率。在一组不同维基准函数上优化的实验结果表明,CPPSO的优化性能、搜索效率和普适性大幅度领先于SLPSO和其他先进的PSO改进算法,如交叉搜索PSO (CSPSO)算法、自我调节的PSO (SRPSO)算法、异构综合学习的PSO (HCLPSO)算法和反向学习和局部学习能力的PSO (RLPSO)算法。  相似文献   

4.
Particle swarm optimization (PSO) is a population based algorithm for solving global optimization problems. Owing to its efficiency and simplicity, PSO has attracted many researchers’ attention and developed many variants. Orthogonal learning particle swarm optimization (OLPSO) is proposed as a new variant of PSO that relies on a new learning strategy called orthogonal learning strategy. The OLPSO differs in the utilization of the information of experience from the standard PSO, in which each particle utilizes its historical best experience and globally best experience through linear summation. In OLPSO, particles can fly in better directions by constructing an efficient exemplar through orthogonal experimental design. However, the global version based orthogonal learning PSO (OLPSO-G) still have some drawbacks in solving some complex multimodal function optimization. In this paper, we proposed a quadratic interpolation based OLPSO-G (QIOLPSO-G), in which, a quadratic interpolation based construction strategy for the personal historical best experience is applied. Meanwhile, opposition-based learning, and Gaussian mutation are also introduced into this paper to increase the diversity of the population and discourage the premature convergence. Experiments are conducted on 16 benchmark problems to validate the effectiveness of the QIOLPSO-G, and comparisons are made with four typical PSO algorithms. The results show that the introduction of the three strategies does enhance the effectiveness of the algorithm.  相似文献   

5.
针对粒子群算法(PSO)种群多样性低和易于陷入局部最优等问题,提出一种粒子置换的双种群综合学习PSO算法(PP-CLPSO).根据PSO算法的收敛特性和Logistic映射的混沌思想,设计并行进化的PSO种群和混沌化种群,结合粒子编号机制,形成双种群系统中粒子的同号结构和同位结构,其中粒子的惯性权重根据适应度值自适应调...  相似文献   

6.
针对传统粒子群优化算法在求解复杂优化问题时易陷入局部最优和依赖参数的取值等问题,提出了一种独立自适应参数调整的粒子群优化算法。算法重新定义了粒子进化能力、种群进化能力以及进化率,在此基础上给出了粒子群惯性权重及学习因子的独立调整策略,更好地平衡了算法局部搜索与全局搜索的能力。为保持种群多样性,提高粒子向全局最优位置的收敛速度,在算法迭代过程中,采用粒子重构策略使种群中进化能力较弱的粒子向进化能力较强的粒子进行学习,重新构造生成新粒子。最后通过CEC2013中的10个基准测试函数与4种改进粒子群算法在不同维度下进行测试对比,实验结果验证了该算法在求解复杂函数时具有高效性,通过收敛性分析说明了算法的有效性。  相似文献   

7.
鉴于求解复杂问题时粒子群优化算法易出现早熟收敛的问题,通过引入轨迹扰动因子,提出随机粒子群进化迭代方程.该方程在统计行为中保证粒子向特定的收敛中心逼近,但对“旧址”的依赖性呈现出随机特性,从而使粒子群的快速跳转和迁移成为可能,避免过早落入局部陷阱.同时该进化方程还利用层叠混沌策略和对称极值扰动策略进一步增强算法的局部收敛性和全局搜索性.实验表明,由上述进化方程和改进策略构成的随机混沌粒子群算法具有鲁棒性较强、收敛速度较快和精度较高等优势,性能优于其他同源粒子群算法.  相似文献   

8.
Particle swarm optimization (PSO) is a heuristic optimization technique based on swarm intelligence that is inspired by the behavior of bird flocking. The canonical PSO has the disadvantage of premature convergence. Several improved PSO versions do well in keeping the diversity of the particles during the searching process, but at the expense of rapid convergence. This paper proposes an example-based learning PSO (ELPSO) to overcome these shortcomings by keeping a balance between swarm diversity and convergence speed. Inspired by a social phenomenon that multiple good examples can guide a crowd towards making progress, ELPSO uses an example set of multiple global best particles to update the positions of the particles. In this study, the particles of the example set were selected from the best particles and updated by the better particles in the first-in-first-out order in each iteration. The particles in the example set are different, and are usually of high quality in terms of the target optimization function. ELPSO has better diversity and convergence speed than single-gbest and non-gbest PSO algorithms, which is proved by mathematical and numerical results. Finally, computational experiments on benchmark problems show that ELPSO outperforms all of the tested PSO algorithms in terms of both solution quality and convergence time.  相似文献   

9.
Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method. In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being trapped in local optima. The learning strategy for each swarm is the well-known comprehensive learning method with a newly designed mutation operator. After the evolution process accomplished in bottom layer, one particle for each swarm is selected as candidate to construct the swarm in the top layer, which evolves by the same strategy employed in the bottom layer. The local search strategy based on LHS is imposed on particles in the top layer every specified number of generations. The new memetic computing model is extensively evaluated on a suite of 16 numerical optimization functions as well as the cylindricity error evaluation problem. Experimental results show that the proposed algorithm compares favorably with conventional PSO and several variants.  相似文献   

10.
As a well-known stochastic optimization algorithm, the particle swarm optimization (PSO) algorithm has attracted the attention of many researchers all over the world, which has resulted in many variants of the basic algorithm, in addition to a vast number of parameter selection/control strategies. However, most of these algorithms evolve their population using a single fixed pattern, thereby reducing the intelligence of the entire swarm. Some PSO-variants adopt a multimode evolutionary strategy, but lack dynamic adaptability. Furthermore, competition among particles is ignored, with no consideration of individual thinking or decision-making ability. This paper introduces an evolution mechanism based on individual difference, and proposes a novel improved PSO algorithm based on individual difference evolution (IDE-PSO). This algorithm allocates a competition coefficient called the emotional status to each particle for quantifying individual differences, separates the entire swarm into three subgroups, and selects the specific evolutionary method for each particle according to its emotional status and current fitness. The value of the coefficient is adjusted dynamically according to the evolutionary performance of each particle. A modified restarting strategy is employed to regenerate corresponding particles and enhance the diversity of the population. For a series of benchmark functions, simulation results show the effectiveness of the proposed IDE-PSO, which outperforms many state-of-the-art evolutionary algorithms in terms of convergence, robustness, and scalability.  相似文献   

11.
针对粒子群算法无法有效兼顾开采与勘探的问题, 提出一种基于密度峰值的依维度重置多种群粒子群算法. 首先采用密度峰值聚类中相对距离的思想并结合适应度值将种群分为两个子种群: 顶层群和底层群. 之后为顶层群设计专注于开采的学习策略而为底层群设计倾向于勘探的学习策略, 以均衡种群的勘探与开采. 最后依维度将陷入局部最优的粒子与全局最优粒子交叉重置, 在有效避免早熟收敛的同时也显著减少了无效计算次数. 将提出的算法与其他改进的优化算法在基础优化问题与CEC2017测试集上进行实验对比, 实验结果均值的统计检验证明了提出算法的改进具有统计学显著性.  相似文献   

12.
Swarm algorithms with chaotic jumps applied to noisy optimization problems   总被引:1,自引:0,他引:1  
In this paper, we investigate the use of some well-known versions of particle swarm optimization (PSO): the canonical PSO with gbest model and lbest model with ring topology, the Bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) on noisy optimization problems. As far as we know, some of these versions like BBPSO and FIPS had not been previously applied to noisy functions yet. A hybrid approach which consists of the swarm algorithms combined with a jump strategy has been developed for static environments. Here, we focus on investigating the introduction of the jump strategy to the swarm algorithms now applied to noisy optimization problems. The hybrid approach is compared experimentally on different noisy benchmark functions. Simulation results indicate that the addition of the jump strategy to the swarm algorithms is beneficial in terms of robustness.  相似文献   

13.
余伟伟  谢承旺 《计算机科学》2018,45(Z6):120-123
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。  相似文献   

14.
Most of the recent proposed particle swarm optimization (PSO) algorithms do not offer the alternative learning strategies when the particles fail to improve their fitness during the searching process. Motivated by this fact, we improve the cutting edge teaching–learning-based optimization (TLBO) algorithm and adapt the enhanced framework into the PSO, thereby develop a teaching and peer-learning PSO (TPLPSO) algorithm. To be specific, the TPLPSO adopts two learning phases, namely the teaching and peer-learning phases. The particle firstly enters into the teaching phase and updates its velocity based on its historical best and the global best information. Particle that fails to improve its fitness in the teaching phase then enters into the peer-learning phase, where an exemplar is selected as the guidance particle. Additionally, a stagnation prevention strategy (SPS) is employed to alleviate the premature convergence issue. The proposed TPLPSO is extensively evaluated on 20 benchmark problems with different features, as well as one real-world problem. Experimental results reveal that the TPLPSO exhibits competitive performances when compared with ten other PSO variants and seven state-of-the-art metaheuristic search algorithms.  相似文献   

15.
针对标准粒子群优化算法易出现早熟收敛、搜索速度慢及寻优精度低等缺陷, 提出一种基于随机惯性权重的简化粒子群优化算法。算法采用去除速度项的粒子群简化结构, 通过随机分布的方式获取惯性权重提高新算法的局部搜索和全局搜索能力, 并且学习因子采用异步变化的策略来改善粒子的学习能力。考虑到个体之间的相互影响关系, 每个粒子的个体极值用所有粒子个体极值的平均值代替。通过几个典型测试函数仿真及F-检验结果表明, 提出的算法在搜索速度、收敛精度、鲁棒性方面较已有改进算法有了显著提高, 并且具有摆脱陷入局部最优解的能力。  相似文献   

16.
Particle swarm optimizer (PSO) is an effective tool for solving many optimization problems. However, it may easily get trapped into local optimumwhen solving complex multimodal nonseparable problems. This paper presents a novel algorithm called distributed learning particle swarm optimizer (DLPSO) to solve multimodal nonseparable problems. The strategy for DLPSO is to extract good vector information from local vectors which are distributed around the search space and then to form a new vector which can jump out of local optima and will be optimized further. Experimental studies on a set of test functions show that DLPSO exhibits better performance in solving optimization problems with few interactions between variables than several other peer algorithms.  相似文献   

17.
针对粒子群算法在计算时存在收敛速度慢、易陷入局部收敛等缺陷,提出了一种融合吸引排斥和双向学习的改进粒子群算法来提高算法的寻优能力。双向学习策略扩大了粒子的搜索范围、丰富了种群多样性;在吸引-排斥策略中,粒子能够分别被全局最优粒子和全局最差粒子所引导进而朝着更优的方向进化,提高了算法的局部寻优性能和收敛能力。同时,在双向学习策略中,为了克服单一性的学习因子和惯性权重在优化复杂函数时无法很好地调节寻优进程的问题,提出了双重自适应策略,更好地平衡群体中粒子的搜索行为。最后利用标准测试函数对该算法进行仿真验证,并与其他两种改进的算法对比。实验结果表明,在相同的实验条件下,改进后的粒子群算法在寻优能力和收敛速度方面具有明显优势。  相似文献   

18.
一种自适应多策略行为粒子群优化算法   总被引:1,自引:0,他引:1  
张强  李盼池 《控制与决策》2020,35(1):115-122
针对粒子群优化算法收敛速度慢、局部搜索能力差等缺点,提出一种自适应多策略行为粒子群优化算法.算法中每个粒子拥有4种行为进化策略,在迭代过程中通过计算每种进化策略的立即价值、未来价值和综合奖励来决定粒子的进化行为,并通过策略行为概率变异算法提升个体寻优速度或避免陷入局部最优解.在经典的基准测试函数上,对新算法与其他7个群智能进化算法的测试结果进行比较分析,结果表明所提出算法具有很好的求解精度和收敛速度,尤其适合应用于一些高维优化问题.  相似文献   

19.
基于混合策略自适应学习的并行粒子群优化算法   总被引:1,自引:0,他引:1  
伍大清  郑建国 《控制与决策》2013,28(7):1087-1093
针对当前各种粒子群优化算法解决问题时存在的局限性,提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO)。该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4种具有不同优势的变异策略,当面对不同形态的复杂问题时通过自适应学习机制选择出合适的策略来完成全局寻优。通过对7个标准测试函数的仿真实验并与其他算法相比较,所得结果表明了所提出的算法具有较快的收敛速度、较高的精度以及很强的跳出局部极值的能力。  相似文献   

20.
Quantum-behaved particle swarm optimization (QPSO) is a recently developed heuristic method by particle swarm optimization (PSO) algorithm based on quantum mechanics, which outperforms the search ability of original PSO. But as many other PSOs, it is easy to fall into the local optima for the complex optimization problems. Therefore, we propose a two-stage quantum-behaved particle swarm optimization with a skipping search rule and a mean attractor with weight. The first stage uses quantum mechanism, and the second stage uses the particle swarm evolution method. It is shown that the improved QPSO has better performance, because of discarding the worst particles and enhancing the diversity of the population. The proposed algorithm (called ‘TSQPSO’) is tested on several benchmark functions and some real-world optimization problems and then compared with the PSO, SFLA, RQPSO and WQPSO and many other heuristic algorithms. The experiment results show that our algorithm has better performance than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号